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A B S T R A C T 

      In this paper, an efficient method based on the Galerkin technique for computing the eigenvalues and 

eigenfunctions for the second-order Sturm-Liouville problems. The first kind of Chebyshev polynomials   ( ) is 
used as basis functions to solve this problem. The Chebyshev-Galerkin method is applied to reduce an ordinary 

differential equation into a system of algebraic equations using the orthogonality of Chebyshev polynomials and 

new relations driven from the orthogonality property. Numerical examples show that the proposed method is an 

easy method to implement and introduce accurate results. 
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1 Introduction 

     Sturm-Liouville boundary value problem has played significant roles in many areas 

of science, engineering, and mathematics. The researchers have studied and many of the 

associated theories introduced over 170 years ago. The solution of various problems in 

the fields of mathematics, physics, and engineering is 

closely related to the solution of Sturm-Liouville problem. In mathematics, some 

separable partial differential equations have reduced to Sturm-Liouville problem as 

wave and heat equations that are used  for describing vibrations of beams of structures 

and heat transferred by conduction in rod in addition to many differential equations such 

as Bessel, Hermite, Jacobi, and Legendre equations can be transformed into Sturm-

Liouville equations as in [1, 2]. In physics, the solution of Sturm-Liouville problems 
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provides a solution of Schrödinger’s equation that is a key result in quantum mechanics 

and illustrates energy state and energy spectrum of systems, for example, hydrogen 

atoms. The Sturm-Liouville theory has been the basis for the development of fields such 

as the spectral theory of differential operators, functional space and modern analysis and 

theory of self-adjoint operators [3]. 

Many methods have been developed to solve one-dimensional Sturm-

Liouville problems, among these methods, finite difference methods [4, 5]. S. Pruess 

replaced the coefficients of Sturm-Liouville equation with piecewise polynomials 

functions to solve it. Recently, Hargrave [7] solved linear Sturm-Liouville eigenvalue 

problems by reducing the second-order Sturm- Liouville into a system of first-order 

equations by using Prüfer substitutions. Canosa and Oliveira [8] presented a one-

dimensional Schrödinger equation that represents the second-order Sturm-Liouville and 

solved it by using step function. Wittrick and Williams [9] developed an efficient 

algorithm for computing the natural undamped frequencies (eigenvalues) of vibration of 

any linearly elastic structure. Jiang et al. [10] studied the existence of second-order 

singular Sturm–Liouville integral boundary value problems. S. Abbasbandy and A. 

Shirzadi [11] used the homotopy analysis method for calculating the second and fourth-

order Sturm-Liouville. S. Yuan et al. [12] used the exact dynamic stiffens method for 

solving regular second-fourth-order Sturm-Liouville problem. B. Chanane [13] used a 

method based on sampling theory to compute the eigenvalues of second-order Sturm-

Liouville problems with parameter-dependent potential and boundary conditions and 

modified his method to be valid for fourth-order Sturm-Liouville as in [14].  M. I. Syam 

and H. I. Siyyam [15, 16] used variational iteration methods for computing the 

eigenvalues of fourth and sixth-order Sturm-Liouville problem. B. S. Attili and D. 

Lesnic[17] used the Adomian decomposition method for getting the eigenelments of 

fourth-order Sturm-Liouville problem. Based on finite difference and Numerov’s 

methods A. Rattana and C. Böckmann [18] stated their method for computing fourth-

order Sturm-Liouville. M. El-Gamel et al. [19] used Galerkin technique and Legendre 

polynomials as basis functions for computing the eigenelements of fourth-order Sturm-

Liouville.  

     In this paper, we present a Chebyshev-Galerkin method for solving the second-order 

Sturm-Liouville boundary value problem in the form: 

 ( ) ( ) ( ) ( ) ( ) ( ),   1 1,
d

p x y x q x y x w x y x x
dx

       (1.1) 

subject to the boundary conditions 

.0)1()1(  yy  (1.2) 
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where ),(xp )(xq and )(xw  are continuous functions. This equation contains both an 

unknown function called eigenfunctions )(xy and an unknown parameter called 

eigenvalues . By using our method, we won’t compute the eigenvalues of this problem 

only, but also we will find eigenfunction at different values . 

     This article is organized as follows: a brief introduction the preliminaries of 

Chebyshev polynomials is presented in Section 2. How to use the Chebyshev-Galerkin 

method to solve the Sturm-Liouville problem introduces in Section 3. The treatment of 

general solution domain for any problem is introduced in Section 4. Section 5 includes 

four solved examples of second-order Sturm–Liouville problems. Finally, the 

conclusions of our results. 

 

2 Chebyshev polynomials Preliminaries 

     In this section, we present some necessary definitions and mathematical 

preliminaries of Chebyshev polynomials first kind )(xTn
 and some important properties 

that are required for our subsequent development. The well-known Chebyshev 

polynomials are defined on the interval ,1[ ]1  and can be determined at endpoints: 

.1)1(,)1()1(  n

n

n TT  (2.1) 

 

The power function kx  can be expanded in a Chebyshev series form as:  
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The product between any two Chebyshev polynomials is given by: 

| |2 ( ) ( ) ( ) ( )n m n m n mT x T x T x T x   . (2.3) 

 

The orthogonality of polynomials on ,1[ ]1 is given by [20-22]: 
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(2.4) 

where  mn,  is the Kronecker symbol and  
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The ths  derivative of Chebyshev polynomials )(xTn
is given as [23] : 
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(2.5)    

where falling factorials   )1()1(  nxxxnx  and inversion symbol ][ p  which is true 

1 if p and 0  otherwise.  

The first )(xTn  and second derivative )(xTn  of Chebyshev polynomial are reduced 

from above equation.  

1

2

2 1 0

0

2 ( ) [ 1 ] ( ).

n

n n j

j

T nT x n n even T x



 



     

 

(2.6) 

 

2
3

2

2 2 0

0

4 1 ( 1) ( ) 4[ 2 ] ( ). 
2

n

n n j

j

n
T n n j j T x n even T x



 



 
       

 
  
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The ths  derivative of the polynomials at endpoints is given as [24]: 
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(2.8) 

 

3 Chebyshev-Galerkin method 

3.1 Eigenvalues computation 

     To compute the eigenvalues of equation (1.1) with boundary conditions (1.2) by 

using Chebyshev polynomials and Galerkin technique together, we will introduce the 
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integration value of the product between rx , )(xTn
, and )(

)(
xT

s

n
 using the Chebyshev 

orthogonality. 

Lemma 1 For n, m and r are integer values 
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Proof 

(i)  By recalling equations (2.2), (2.3) and (2.4), we can write rx in terms of )(xT j . By 

using equation (2.3), the product of )(xTn )(xTm
can be as a sum of two Chebyshev 

polynomials. Finally, by using the orthogonality property (2.4), we can prove (i). To 

prove lemma (ii) and (iii), ( )nT x  and ( )nT x  can be written as  )(xT using equation 
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(2.6) and (2.7) respectively. Similar to the steps in lemma (i), relations (ii) and (iii) can 

be proved.   

For the sake of simplicity, equation (1.1) can be expanded and written as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), 1 1.p x y x p x y x q x y x w x y x x         (3.1) 

The approximated solution of equation (1.1) in terms of the first kind Chebyshev 

polynomials )(xTn
is given as: 





n

j

jjn xTcxy
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).()(  
 

(3.2) 

By applying Galerkin method using Chebyshev polynomials as a basis on equation (3.1), 

yields 
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(3.3) 

where the inner product .,. is defined as: 
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By replacing each )(xy  in the equation (3.3) with the approximate solution defined in 

(3.2) and expanding the functions ),(xp ( ),p x )(xq  and )(xw , we introduce the following 

theorem. 

Theorem 3.1 If the assumed approximate solution of (1.1) with boundary condition (1.2) 

is (3.2), then the discrete Chebyshev-Galerkin system for the determination of the 
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The matrix form of the previous theorem is  

,A Bc c  (3.4) 

where  
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E c T
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   which is deduced from the boundary conditions (1.2) and can 

be determined from equation (2.1). The terms  
,j r

S and  
,j r

G  are calculated by using 

equations Lemma 1. By multiplying equation (3.4) by 1B , yields 

,cc    (3.5) 

where .1AB  Equation (3.5) be in homogenous form as  

  .OI  c  (3.6) 

So, the eigenvalues   can be calculated by solving the equation 

.0 I   

 

3.2 Eigenfunctions computation 

     This section illustrates how eigenfunctions can be calculated. The basic idea of 

calculations is converting the equation (1.1) into an initial value problem. Assume that 

)(1 xy  and )(2 xy are the solutions of initial value problem of equation (1.1) by 

normalizing conditions. 

( 1) 0, ( 1) 1,y y     

and 

( 1) 0, ( 1) 0,y y     
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 respectively. The eigenfunctions can be obtained: 

1 2( ) ( )  ( ),ny x y x y x   (3.7) 
 

According to equation (1.2), equation (3.11) can be reformed as: 
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4 Treatment of General solution domain 

     The solution domain changes from application to another. In several applications, the 

solution domain is not necessary to be ,1[ ]1 . To solve Sturm-Liouville problem using 

Chebyshev-Galerkin method discussed in Section 3 with a general solution domain ],[ ba , 

we should use the linear transformation: 

.)1)((
2

1
axabt    

(4.1) 

Assume, the general domain of the second-order Sturm-Liouville problem as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), .p t y t p t y t q t y t w t y t a t b        (4.2) 

 By applying the transformation (4.1) into the problem (4.2), yields 

2
2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), 1 1.p x y x p x y x q x y x w x y x x
b a b a


   

          
    

 
 

After solving the last equation by our method, we can get the solution in terms of 

variable t  by using the inverse linear transformation that is used above, we can get the 

eigenfunctions in terms of x . 

 

5 Numerical results 

     In this section, four examples of second-order Sturm-Liouville problems are 

presented to confirm the accuracy of the proposed method. The eigenvalues and 

corresponding eigenfunctions for each problem are calculated. The comparison between 

the results of Chebyshev-Galerkin method and other methods will introduce in this 

section. All programs carry out by using MATLAB 2012 and Mathematica 10 packages. 

 

Example 5.1  [25, 26] Consider the following second-order Sturm-Liouville problem 
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 ( ) ( ) 0, 0 1,y x y x x      (5.1) 

with boundary conditions 

.0)1(,0)0(  yy  

The exact solution is given in [25, 26] 

,3,2,1,)( 2  kk  

The eigenvalues of this problem are displayed in Table 1 beside the exact solution. Fig. 

1 shows the eigenfunctions for the first four eigenvalues 

Table 1:  Comparison of eigenvalues for example 5.1 

k GalerkinChebyshev  
Exact  

1 9.869604401089358 9.869604401089358 

2 39.47841760435743 39.47841760435743 

3 88.82643960980422 88.82643960980422 

4 157.9136704174297 157.9136704174297 

5 246.7401100272339 246.7401100272339 

6 355.3057584392169 355.3057584392169 
 

 

Fig. 1: The first four eigenfunctions for Example 5.1 
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Example 5.2 [5, 6] Consider the following second-order Sturm-Liouville problem 

 6 4( ) 0.75 ( ) ( ) 0, 1 2,x y x x y x y x x       (5.2) 

with boundary conditions 

.0)2(,0)1(  yy  
 

The exact solution is given in [5, 6] as 2 264
,    1,  2,  3,  .

9
k k   . The comparison 

between the eigenvalues of equation (5.2) and exact values are listed in Table 2. The 

eigenfunctions of the first four eigenvalues are presented in Fig. 2. 

Table 2:  Comparison of eigenvalues for example 5.2 

  GalerkinChebyshev  
Exact  

1 65.646421082678754 70.183853518857661 

2 275.34349367762262 280.73541407543064 

3 625.97865842322415 631.65468166971895 

4 1117.1401432999673 1122.9416563017225 

5 1748.7294360422866 1754.5963379714415 

6 2520.7137863704301 2526.6187266788758 
 

 

Fig. 2: The first four eigenfunctions for Example 5.2 



Hesham ahmed mohammed abd-EL Gawad/et al/Engineering Research Journal 163 (September 2019) ph1 – ph15  

 

ph11 

 

Example 5.3 [17] Consider the following second-order Sturm-Liouville problem 

2( ) 0.01 ( ) ( ) 0, 0 5,y x x y x y x x       (5.3) 

subject to 

0)5(,0)0(  yy  

Equation (5.3) plays a great role in solving the eigenvalues of higher order fourth and 

sixth order Sturm-Liouville as mention in [27], [17] and [24]. The eigenvalues of 

fourth-order Sturm-Liouville can be determined by square of the eigenvalues of 

equation (5.3) and the eigenvalues of sixth-order Sturm-Liouville can be computed by 

cubic the eigenvalues of equation (5.3). In Table 3, the computed eigenvalues are 

compared with those obtained by Adomian decomposition method and SLEIGN2 

algorithm [29]. Fig. 3 shows the first four eigenfunctions.  

 

Example 5.4 [11] Consider the following second-order Sturm-Liouville problem 

( ) ( ) ( ) 0, 0 1,xy x y x xy x x       (5.4) 

with boundary conditions 

.0)1(,0)0(  yy  

S. Abbasbandy and A. Shirzadi [11] used the homotopy method to solve this problem, 

while P. Baily et al. [29] used SLEIGN2 algorithm to compute the eigenvalues of above 

problem. Table 4 shows a comparison between the eigenvalues of equation (5.4) that are 

computed by our method and the previous methods. Fig. 4 presents the first four 

eigenfunction. 

 

Table 3:  Comparison of eigenvalues for example 5.3 

  GalerkinChebyshev  ADM  2SLEIGN  

1 0.46373576996809  0.46373576999161 0. 463735819000 

2 1.65976201145158 1.65976201145916 1. 659762140000 

3 3.63529249725374 3.63529249724954  

4 6.39928275351277 6.39928275349180  

5 9.95256138202374 9.95256138580108  

6 14.2953045531725 14.2952612249506  

7 19.4275685737352 19.7523934066243  
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Fig. 3: The first four eigenfunctions for Example 5.3 

 

 

Table 4:  Comparison of eigenvalues for example 5.4 

  GalerkinChebyshev  Homotopy  2 SLEIGN  

1 7.3739850191  7.3739850100 7.3739900000 

2 36.336019594  36.336018510 36.336020000 

3 85.292582096  85.292510750 85.292580000 

4 154.09862374  154.10192997 154.09862000 
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Fig. 4: The first four eigenfunctions for Example 5.4 

 

6 Conclusion  

     In this paper, we introduced an accurate Chebyshev-Galerkin numerical technique 

for evaluating the eigenvalues and eigenfunctions of second-order Sturm-Liouville 

boundary value problems. The numerical examples illustrate the efficiency and 

accuracy of the present method as follows: in Example 1, the eigenvalues are very close 

to the exact solution. The results are in good agreement which is approaching to the 

exact solution as in Example 2. The results of Examples 3, 4 are in good agreement with 

the other methods like Adomian decomposition, homotopy and SLEIGN2 algorithm. 
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