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Abstract 

This research work introduces a new concept of shape recognition where we obtain 

a geometric form from some given parameters related to architecture geometry. 

They include cell face slope, edge length initial value of the vertical alignment and 

boundary vertices of the horizontal alignment. Here we construct a conical mesh 

with horizontal planar latitudes from initial horizontal and vertical alignments. For 

this purpose, analytic geometry, interpolation, data structures using Visual C++ 

Programming, computational geometry and CAD features are used.  

Keywords: Architectural geometry, computer aided geometric modelling, shape 

recognition, conical meshes, interpolation and computational geometry.  

1.1. Introduction 

Conical meshes were presented by [1] as shown in Fig. 1. It was proved that a mesh 

valence 4 vertex is conical if and only if: 

                                                            

A description of meshes that admit uniform distance edge offsets based on a graph-

theoretic analysis of the underlying dual mesh was presented by [2] as shown in 

Fig. 2. The use of ruled surfaces for geometric modelling or approximation was 

investigated by [3] as shown in Fig. 3. The concept of geometry from combinatory 

was introduced by [4] as shown in Fig. 4.  
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Fig. 1: Four faces 

touch a common 

cone Γ and have 

interior angles 

       . 

Fig. 2: Plane 

generated by 

normals of 

𝐹  𝐹 . 

Fig. 3: The control points 

of a ruled B-spline 

surface are displaced to 

optimally approximate a 

given point cloud. 

Fig. 4: A mixed 

polygonal mesh. The 

vertex star around vertex 

𝑖 consists of all triangles 

generated by the edges 

through 𝑖. 

1.2. Overview 

Planar quad meshes have many advantages stated in [5] and [6]. Thus, we aim to 

implement a conical valence 4 dominant mesh depending on a closed discrete 

planar curve as an initial horizontal alignment. The opened discrete planar curve is 

an initial vertical alignment. In the next section we introduce a geometric modelling 

approach. Section 3 shows some theorems for constructing different forms of 

horizontal and vertical alignments. Section 4 shows an algorithm of constructing a 

conical mesh. Section 5 shows some implemented algorithms results. Section 6 

shows some geometric analysis. Section 7 shows the discussion, while section 8 

concludes our research work. 

2. Geometric Modelling Approach 

2.1. 2 Cells Semi Conical Angle 

 

Fig. 5: The conical angle is the dihedral angle          . The semi conical angle is 

the dihedral angle         . 

Theorem 1: For a right circular cone with semi vertex angle γ and axis 𝑎, if 𝛼  𝛼  

are two tangent planes to the cone at 𝑟  𝑟 ,   ∈ 𝑟 ,   ∈ 𝑟 ,   𝛼 ∩ 𝛼  , plane 

𝛽[𝑎  ] and 𝜎  ⦨ 𝑎    i.e. 𝛾 < 𝜎 < 𝜋 − 𝛾. Then, the semi conical angle 𝛿  
⦨         will be given by the relation:  

𝑠𝑖𝑛 𝛿  
    

    
                                                               2  
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The conical angle will be given by the relation: 

𝑐𝑜𝑠 2𝛿   − 2(𝑠𝑖𝑛  𝛾)(𝑐𝑠𝑐   𝜎)                                             3  

Proof: For simplicity let the vertex be at origin,  𝑎 ≡ 𝑧-axis and  𝛽 ≡ plane 𝑦𝑧 as 

shown in Fig. 5.  

Let    𝑥  𝑦  𝑧  .           ∴ 𝑥 
  𝑦 

  𝑧 
 𝑡𝑎𝑛  𝛾.                              𝑎   

Also                    The gradient vector 𝑑〈𝑥  𝑦  −𝑧 𝑡𝑎𝑛  𝛾〉 is a normal vector of α . 

∵ 𝑒〈0 𝑠𝑖𝑛 𝜎  𝑐𝑜𝑠 𝜎〉 is a unit vector in the direction of   and 𝑑 ⊥ 𝑒. 

∴ Based on the result of dot product of the orthogonal vectors, one can conclude that: 

𝑦  𝑧 (𝑡𝑎𝑛
  𝛾) 𝑐𝑜𝑡 𝜎                                                     

From  𝑎  and     we get: 𝑥  ±𝑧  𝑡𝑎𝑛 𝛾 √ − (𝑡𝑎𝑛  𝛾)(𝑐𝑜𝑡   𝜎). 

∴ d⃗⃗  z  tan γ 〈±√ −  tan  γ  cot  σ   tan γ  cot σ  − tan γ〉 

∵ 𝑓〈  0 0〉 is a normal vector of 𝛽. 

∴ 𝑐𝑜𝑠 𝛿   𝑐𝑜𝑠 𝛾 √ − (𝑡𝑎𝑛  𝛾)(𝑐𝑜𝑡   𝜎)                    𝑐𝑜𝑠 𝛾 > 0               4           

∴ 𝑠𝑖𝑛 𝛿  √ − 𝑐𝑜𝑠 𝛿  
    

    
∎. 

∴ 𝑐𝑜𝑠 2𝛿  𝑐𝑜𝑠   𝛿 − 𝑠𝑖𝑛  𝛿   − 2(𝑠𝑖𝑛  𝛾)(𝑐𝑠𝑐   𝜎)∎. 

2.2. Valence 3 Conical Vertex 

Theorem (2): Any mesh valence 3 vertex is conical.  

Proof: Let 𝑎 be a line with direction cosines 𝑙 𝑚 𝑛 making the same angle of 

inclination on the three planes 𝛼  𝛼  𝛼  as shown in Fig. 6. Let 〈𝐸  𝐹  𝐺 〉 be 

normal vector components of α  where 𝑖    2 3. Assume 

𝑔  √ 𝐸  
   𝐹  

   𝐺  
 .   

∴
|𝑙𝐸  𝑚𝐹  𝑛𝐺 |

𝑔 

 
|𝑙𝐸  𝑚𝐹  𝑛𝐺 |

𝑔 

 
|𝑙𝐸  𝑚𝐹  𝑛𝐺 |

𝑔 

 

Assuming:  

{

𝑑   𝐹 𝑔 − 𝐹 𝑔   𝐺 𝑔 − 𝐺 𝑔  −  𝐹 𝑔 − 𝐹 𝑔   𝐺 𝑔 − 𝐺 𝑔  

𝑒   𝐸 𝑔 − 𝐸 𝑔   𝐺 𝑔 − 𝐺 𝑔  −  𝐸 𝑔 − 𝐸 𝑔   𝐺 𝑔 − 𝐺 𝑔  

𝑓   𝐸 𝑔 − 𝐸 𝑔   𝐹 𝑔 − 𝐹 𝑔  −  𝐸 𝑔 − 𝐸 𝑔   𝐹 𝑔 − 𝐹 𝑔  
                 𝑎  

{

𝑑   𝐹 𝑔 − 𝐹 𝑔   𝐺 𝑔  𝐺 𝑔  −  𝐹 𝑔  𝐹 𝑔   𝐺 𝑔 − 𝐺 𝑔  

𝑒   𝐸 𝑔  𝐸 𝑔   𝐺 𝑔 − 𝐺 𝑔  −  𝐸 𝑔 − 𝐸 𝑔   𝐺 𝑔  𝐺 𝑔  

𝑓   𝐸 𝑔 − 𝐸 𝑔   𝐹 𝑔  𝐹 𝑔  −  𝐸 𝑔  𝐸 𝑔   𝐹 𝑔 − 𝐹 𝑔  
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{

𝑑   𝐹 𝑔  𝐹 𝑔   𝐺 𝑔 − 𝐺 𝑔  −  𝐹 𝑔 − 𝐹 𝑔   𝐺 𝑔  𝐺 𝑔  

𝑒   𝐸 𝑔 − 𝐸 𝑔   𝐺 𝑔  𝐺 𝑔  −  𝐸 𝑔  𝐸 𝑔   𝐺 𝑔 − 𝐺 𝑔  

𝑓   𝐸 𝑔  𝐸 𝑔   𝐹 𝑔 − 𝐹 𝑔  −  𝐸 𝑔 − 𝐸 𝑔   𝐹 𝑔  𝐹 𝑔  
                 c  

{

𝑑   𝐹 𝑔  𝐹 𝑔   𝐺 𝑔  𝐺 𝑔  −  𝐹 𝑔  𝐹 𝑔   𝐺 𝑔  𝐺 𝑔  

𝑒   𝐸 𝑔  𝐸 𝑔   𝐺 𝑔  𝐺 𝑔  −  𝐸 𝑔  𝐸 𝑔   𝐺 𝑔  𝐺 𝑔  

𝑓   𝐸 𝑔  𝐸 𝑔   𝐹 𝑔  𝐹 𝑔  −  𝐸 𝑔  𝐸 𝑔   𝐹 𝑔  𝐹 𝑔  
                 𝑑  

∴ 𝑚  𝑛 [
  

  
]  𝑙  𝑛 [

  

  
] where 𝑗      4 ∴ 𝑑  𝑒  𝑓  are direction ratios of 𝑎 .  

Hence, there are four cones touching the three planes α  α  α ∎.  

 

Fig. 6: Three planes α  α  and α  intersecting at 𝑉 have four cones of revolution whose 

common vertex is 𝑉 and axes 𝑎    𝑎 . Each cone touches the three planes. 

Example: Find the direction ratios of the axes of the cones touching the three 

planes whose normal vectors: 〈     〉 〈  −2 2〉 〈−2 0  〉. 

Solution: from above  a   b   c   d   the direction ratios of the four axes are 

given by:                                       

{

𝑑  −4.3
𝑒  3.28
𝑓  34.0 

 {

𝑑   4.69
𝑒  −34.46
𝑓  − 3.22

 {

𝑑  −26.69
𝑒  4.46

𝑓  − 0.77
 {

𝑑   6.29
𝑒  26.72
𝑓  − 0.0 

 

Theorem (3): If two adjacent planes of each row of valence 4 mesh with 

horizontal latitudes have equal slopes, their common meridian will be a vertical 

plane. Each mesh vertex will be conical one.    

Proof: let 𝑟 
    be the horizontal projection of 𝑟   (𝛼   ∩ 𝛼     ) as shown in Fig. 7. 

 ∵ ⦨(𝛼    𝜋 )  ⦨(𝛼      𝜋 ). ∴ 𝑟′    bisects ⦨(𝑙    𝑙     ). 

Similarly: 𝑟 
      bisects ⦨(𝑙       𝑙

 
       ). But 𝑙   //𝑙      𝑙     //𝑙       .  

∴ 𝑟 
   ≡ 𝑟 

     ≡ 𝑟 
  which is the horizontal edge view of the meridian∎. 

For a vertex 𝑣                 ∵            ∴ it is a special case 

of a conical vertex∎. 
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Fig. 7: A special case of a conical vertex where            . 

3. Alignment Geometric Construction 

3.1. Elliptic Horizontal Alignment     

Theorem (4): If the given mesh boundary is an ellipse discretized by taking 𝑛 −   

points in each quadrant, each is given by 𝑟 𝜃   where 𝜃    (𝜃  
 

  
). The length 

of the chord (boundary edge) increases gradually from the vertex to the co-vertex. 

This division suits the nature of curvature which decreases from the vertex to the 

co-vertex.  

Proof: A point on an ellipse is given by    𝑎 𝑐𝑜𝑠 𝜃  𝑘   𝑠𝑖𝑛 𝜃   as shown in Fig 8. 

∴ The distance between any two successive points is given by: 

𝐿  √𝑎  cos 𝜃   − cos 𝜃  
     sin 𝜃   − sin 𝜃  

  

𝑐𝑜𝑠 𝜃   − 𝑐𝑜𝑠 𝜃  𝑐𝑜𝑠 (𝜃  
 

  
) − 𝑐𝑜𝑠 𝜃   𝑐𝑜𝑠 𝜃  ((𝑐𝑜𝑠

 

  
) −  ) − 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛

 

  
 

−2𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛
  

  
− 2𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛

 

  
𝑐𝑜𝑠

 

  
 −2𝑠𝑖𝑛

 

  
*𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛

 

  
 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠

 

  
+  

−2 𝑠𝑖𝑛
 

  
𝑠𝑖𝑛 (𝜃  

 

  
).  

Similarly 𝑠𝑖𝑛 𝜃   − 𝑠𝑖𝑛 𝜃  2 𝑠𝑖𝑛
 

  
𝑐𝑜𝑠 (𝜃  

 

  
) 

Hence 𝐿  √4𝑎 𝑠𝑖𝑛  

  
𝑠𝑖𝑛 (𝜃  

 

  
)  4  𝑠𝑖𝑛  

  
𝑐𝑜𝑠 (𝜃  

 

  
)  

2 𝑠𝑖𝑛
 

  
√ 𝑎 −    𝑠𝑖𝑛 (𝜃  

 

  
)     where 𝑎   𝑛 are constants, 𝑎 >  ∎ 
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Fig. 8: A discrete analog of an ellipse centered 

at   𝑘  and whose axes 2𝑎 and 2 . The length 

of the chord increases gradually from the 

vertex to the covertex. 

Fig. 9: An output screen for a dicrete 

analog of an ellipse. 

//function for determining points on an ellipse 

void ellipHor(double a, double b, double theta, double *xEllip, double *yEllip){ 

   double thetaRad = theta*3.14159265358979 / 180; 

   *xEllip = -a*(cos(thetaRad)) + 550; 

   *yEllip = b*(sin(thetaRad)) + 350; } 

See the output screen in Fig. 9. 

3.2. Given Boundary Vertices Interpolation  

Given a number of boundary points, Newton Forward divided difference 

interpolation is used to construct a closed curve as a union of two polynomial 

curved segments of different degrees. The resulted closed curve is divided into any 

required number of vertices.  

Theorem (5): If a parabolic curved segment with vertical axis and vertex 

𝑉 𝑥  𝑦  , is discretized by taking n points    𝑥  𝑦   to the right (or left) of 𝑉 where 

𝑥    𝑥   where   
     

 
. The length of a chord increases gradually from V to 

P . This division suits the nature of curvature at the curve vertex. 

 

Fig. 10: A discrete analog of a parabolic segment. The length of the chord increases gradually 

from the vertex. 
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Proof: Given a parabolic curved segment with vertical axis as shown in Fig 10. The 

curve is given by: 𝑦  𝑎𝑥   𝑥  𝑐. As 𝑥  
  

  
. Then 𝑥  

  

  
 𝑖. Hence, the 

length of any chord        
̅̅ ̅̅ ̅̅ ̅̅ ̅ is given by: 𝐿  √   𝑎  2𝑖     , where 𝑎  are 

constants ∴ 𝐿  increases as |𝑖| increases which suits the nature of curvature at the 

curve vertex∎. 

4. An Algorithm for Given Boundary Shape Recognition with Conical 

Meshes 

Let 𝑉    𝑉      𝑉      be planar polygon vertices in the plane 𝐸 . One can consider 

it as an initial part of the horizontal alignment of a conical mesh in 𝐸 . These 

polygons are called the latitudes. The 2D mesh will be considered as a 3D surface 

has also an initial vertical alignment which is a planar discrete analog of a curve 

𝑉    𝑉      𝑉     . These curves are called meridians. Each latitude is a horizontal 

planar closed discrete analog of a curve whose plane 𝜋  equation is given by 

𝑧  𝑉   . 

4.1.  A Brief Outline Of The Algorithm 

The following algorithm constructs a row 𝑖 of the valence 4 dominant conical mesh. 

The row lies between the two horizontal planes 𝜋  𝜋   .  

1- Construct the plane 𝛼   (𝑉    𝑉    𝑉     ) as shown in Fig 11. Calculate 𝜃  

⦨(𝛼    𝜋 ).   

2- Construct planes α   ⊃ {V    V     }, where ⦨(𝛼    𝜋 )  𝜃  𝑗    2   𝑛 −   as 

shown in Fig 12.  

3- Compute intersection lines 𝑟   (𝛼     ∩ 𝛼   ) 𝑡   (𝛼     ∩ 𝛼     ) and 

𝑠   (𝛼     ∩ 𝛼     ) where their intersections with plane 𝜋    are the points 

𝑉     
  𝑇     

  and 𝑆     
  respectively as shown in Fig. 13.  

4- If 𝑇   (𝑟   ∩ 𝑟     ) ∈ 𝑉    𝑉     
 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅: join 𝑉   𝑇   ̅̅ ̅̅ ̅̅ ̅ 𝑉     𝑇   ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

a- If 𝑆   (𝑡   ∩ 𝑟     ) ∈ 𝑇    𝑇     
 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅: join 𝑇   𝑆   

̅̅ ̅̅ ̅̅ ̅̅  𝑉     𝑆   
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

If 𝑈   (𝑠   ∩ 𝑟     ) ∈ 𝑆    𝑆     
 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅: join 𝑆   𝑈   

̅̅ ̅̅ ̅̅ ̅̅  𝑉     𝑈   
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑈   𝑉     

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ as shown in 

Fig. 14.     

Otherwise, 𝑉     ≡ 𝑆     
 , join 𝑆   𝑆     

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

b- Otherwise: 𝑉     ≡ 𝑇     
 , join 𝑇   𝑉     

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Otherwise, 𝑉     ≡ 𝑉     
 , join 𝑉   𝑉     

̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
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Fig. 11: Construction of the 

first plane in the row. 

Fig. 12: Construction of the 

general plane in the row. 
Fig. 13: Construction of the 

line 𝑟    and the point 𝑉     . 

 
 

Fig. 14: Points 𝑇    𝑆    𝑈    𝑇
 
      𝑆

 
       

𝑈′      and lines 𝑡    𝑠    

Fig. 15: An output screen for one row in 

Axonometric projection. 

4.1.1. Algorithm Implementation  
if ((t[i][j].z > v[i][0].z0) && (t[i][j].z < v[i + 1][0].z0)){ 
 if ((s[i][j].z < v[i + 1][0].z) && (t1[i + 1][j].z < t[i][j].z)) { 
  if ((u[i][j].z < v[i + 1][0].z) && (s[i][j].z < abs(s1[i + 1][j].z)){ 
   coordinates(&v[i + 1][j].x, &v[i + 1][j].y, u1[i + 1][j].x, u1[i + 1][j].y); } 
  else { 

coordinates(&v[i + 1][j].x, &v[i + 1][j].y, s1[i + 1][j].x, s1[i + 1][j].y); } 
 } 
 else { 

coordinates(&v[i + 1][j].x, &v[i + 1][j].y, t1[i + 1][j].x, t1[i + 1][j].y); } 
} 
else {//ordinary 
coordinates(&v[i + 1][j].x, &v[i + 1][j].y, v[i + 1][j].x0, v[i + 1][j].y0); } 

See the output screen in Fig. 15. 

  
Fig. 16: An output screen for constructing 

the first face in the row. 

Fig. 17: An output screen for constructing 

the other faces in the row. 
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4.2. Starting Face Plane 

Let 〈∆𝑥  ∆𝑦  0〉 〈0 ∆𝑦  ∆𝑧 〉 be direction vectors of 𝑉    𝑉   
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑟    respectively as 

shown in Fig. 11. ∴ The equation of α   (𝑉    𝑉    𝑉     ) is given by: 

𝐸   𝑥  𝐹   𝑦  𝐺   𝑧  𝐻                                                                                         5   

Where 𝐸    ∆𝑦 ∆𝑧  𝐹    −∆𝑥 ∆𝑧  𝐺    ∆𝑥 ∆𝑦 , 

𝜃  ⦨(𝛼    𝜋 )  𝑐𝑜𝑠  [
    

√(    )
 
 (    )

 
 (    )

 
]  

//constants of a plane defined by two straight lines  

void plane(double x1, double x2, double y1, double y2, double z1, double z2, double d, double e, double f, double 

*E, double *F, double *G, double *H){ 

 *E = (y2 - y1)*f - (z2 - z1)*e; 

 *F = (z2 - z1)*d - (x2 - x1)*f; 

 *G = (x2 - x1)*e - (y2 - y1)*d;}  

See the output screen in Fig. 16. 

4.3. General Face Plane 

Any other face of the row is defined by the plane 𝛼   ⊃ 𝑉    𝑉     
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ : ⦨(𝛼    𝜋 )  𝜃  

as shown in Fig. 12. Let 〈∆𝑥    ∆𝑦    0〉 be a vector in the direction of 𝑉    𝑉     
⃡⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and 

〈  𝐵 𝐶〉 be a normal vector of α   . Based on the result of dot product of the 

orthogonal vectors, one can conclude that: 

                              (∆𝑥   )  𝐵(∆𝑦   )  0                                                𝑎   

Since it is constrained that: ⦨(𝛼    𝜋 )  𝜃   

∴ 𝑐𝑜𝑠 𝜃  
  

        
         i.e.    𝐵  𝐶 𝑡𝑎𝑛 𝜃                                    

Solving  𝑎  and     for the normal vector direction ratios: 

 

 
 

 ∆         

√(∆    )
 
 (∆    )

 
∴

 

 
 

∆         

√(∆    )
 
 (∆    )

 
  

∴ The equation of 𝛼    is given by: 

𝐸   𝑥  𝐹   𝑦  𝐺   𝑧  𝐻                                                                                          6  

Where {
𝐸    ∆𝑦   

𝐹    −∆𝑥   
{

𝐺     𝑐𝑜𝑡 𝜃  √∆𝑥   
  ∆𝑦   

 

𝐻    𝐸   𝑥    𝐹   𝑦    𝐺   𝑧   
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//Other Planes of row j:  
for (int i = 1; i < 20; i++) { 

 p[j][i].E = v[j][i + 1].y - v[j][i].y; 

 p[j][i].F = v[j][i].x - v[j][i + 1].x; 

 p[j][i].G = pow(pow(p[j][i].E, 2) + pow(p[j][i].F, 2), 0.5)/ tanTheta;} 

See the output screen in Fig. 17. 

4.4. Valence 4 Vertex  

The adjacent planes meridian segment 𝑟   (𝛼     ∩ 𝛼   ) as shown in Fig. 13 has a 

direction vector of: 〈𝐸      𝐹      𝐺     〉 × 〈𝐸    𝐹    𝐺   〉. 

Assuming {

𝑎    𝐹     𝐺   − 𝐹   𝐺     

     𝐸   𝐺     − 𝐸     𝐺   

𝑐    𝐸     𝐹   − 𝐸   𝐹     

∴ 𝑟   ≡
      

    
 

      

    
 

      

    
                 7  

∵ 𝑉     (𝑥      𝑦      𝑧     ) ∈ 𝑟   , 𝑧      𝑧     . 

∴ 𝑥      
    

    
(𝑧     − 𝑧   )  𝑥   ,                                                                          8  

𝑦      
    

    
(𝑧     − 𝑧   )  𝑦                                                                                  9  

4.5. A valence 3 vertex: 

It is required to find the vertex 𝑆 (𝑟   ∩ 𝑟     ) as shown in Fig. 14. The parametric 

equations of the two lines 𝑟    𝑟      are given by:  

{
𝑥  𝑥    𝑎   𝑡 𝑦  𝑦        𝑡 𝑧  𝑧    𝑐   𝑡                               𝑎 

𝑥  𝑥      𝑎     𝑠 𝑦  𝑦            𝑠 𝑧  𝑧      𝑐     𝑠     
 

at 𝑆 : 𝑥    𝑎   𝑡  𝑥      𝑎     𝑠   𝑐      𝑦        𝑡  𝑦            𝑠   𝑑  

Eliminating s  we get: 𝑡  
      (           )       (           )

                     
                                     0  

Hence, coordinates of 𝑇    are given by:         (𝑥    𝑎   𝑡  𝑦        𝑡  𝑧    𝑐   𝑡 ) 

5. Implemented Algorithm Results  

The following are some printed output of the program to show the variations of the 

constructed surfaces according to the horizontal and vertical alignment inputs. 

Fig 18: Horizontal alignment consists of two parabolas. Vertical alignment is an 

elliptic segment.  

Fig 19: Horizontal alignment consists of a parabola and a 4
th

 degree curve, vertical 

alignment is a circular arc.     

Fig 20: The horizontal alignment is an ellipse, vertical alignment is a circular arc.  

Fig 21: The horizontal alignment is a circle, vertical alignment is an elliptic 

segment. 
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Fig. 18 

  

Fig. 19 

  

Fig 20 Fig 21 

6. Mesh Geometric Analysis   

6.1. Meridian Plane   

Theorem (6): The plane 𝛽    bisecting ⦨(𝛼      𝛼   ) is vertical and is given by the 

equation of the horizontal projection of the line 𝑟   (𝛼     ∩ 𝛼   ) and 𝛽   ≡ 𝜇  

where 𝜇  is the meridian plane. 

Proof: Let 𝑟′  be the horizontal projection of 𝑟    as shown in Fig 22. 

From the constants of  6 : 

√𝐸   
  𝐹   

  𝐺   
  𝐺   𝑠𝑒𝑐 𝜃                                                
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∴ 𝛽    is given by: 
                      

    
 

                              

      
 

∴ (𝐸   𝐺     − 𝐸     𝐺   )𝑥 − (𝐹     𝐺   − 𝐹   𝐺     )𝑦  𝐻   𝐺     − 𝐻     𝐺   

 𝑥   [𝐸   𝐺     − 𝐸     𝐺   ] − 𝑦   [𝐹     𝐺   − 𝐹   𝐺     ] 

∴ From constants of  7 : 𝛽   ≡
(      )

    
 

(      )

    
≡ 𝑟′  𝛽    is a vertical plane∎. 

∵ 𝑟′  is a horizontal edge view of the meridian. ∴ 𝛽   ≡ 𝜇 ∎. 

 

Fig. 22: The meridian plane 𝜇  bisects the angle between any two adjacent planes 𝛼      and 𝛼    

6.2. The Relation Between Semi Conical Angle and Semi Latitudinal 

Angle   

Theorem (7): The semi conical angle 𝛿    ⦨(𝛼    𝛽   ) is given by the relation: 

 𝑐𝑜𝑠 𝛿    (𝑐𝑜𝑠 휀   ) 𝑠𝑖𝑛 𝜃  .                                             2    

Where 휀    is the semi latitudinal angle and 𝜃  is the inclination angle of the 𝑖   row 

planes. 

Proof: For any two adjacent planes as shown in Fig. 23:  

The vectors in the directions of 𝑙    and 𝑟 
  are given by 〈∆𝑥    ∆𝑦   〉 and 〈𝑎        〉: 

𝑐𝑜𝑠 휀    
|    ∆         ∆    |

√    
      

 √∆    
  ∆    

 
                                         𝑎  

From the constants of 𝛼    given by  6  and the constants of 𝛽    given by theorem 6: 

𝑐𝑜𝑠 𝛿    
|    ∆         ∆    |

     √    
      

 √∆    
  ∆    

 
                                  

From  𝑎  and    :  𝑐𝑜𝑠 𝛿    𝑐𝑜𝑠 휀   𝑠𝑖𝑛 𝜃 ∎. 
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Fig. 23: The length of the meridian segment varies according to the angles 𝜃  and 휀    and 

the vertical distance between 𝑉    and 𝑉      

6.3. The Meridian Segment   

Theorem (8): The length 𝐷    of a meridian segment is given by:  

𝐷    (𝑧     − 𝑧   )√𝑐𝑜𝑡 𝜃 𝑐𝑠𝑐
 휀                                     3        

Proof: Let 𝛿    ⦨(𝛼    𝛽   ) and 𝛤 be a cone with vertical axis 𝑎, touching the 

planes 𝛼      𝛼    as shown in Fig. 23, then its semi vertex angle is (
 

 
− 𝜃 ) and 

⦨(𝑟    𝑎)  
 

 
− 𝛾   . From  4 : 

𝑐𝑜𝑠 𝛿     𝑠𝑖𝑛 𝜃  √ − (𝑐𝑜𝑡   𝜃 )(𝑡𝑎𝑛
  𝛾   ).                    4  

From   2  and   4 : 𝑐𝑜𝑠 휀    √ − (𝑐𝑜𝑡   𝜃 )(𝑡𝑎𝑛
  𝛾   )  

i.e. 𝑡𝑎𝑛 𝛾    𝑠𝑖𝑛 휀   𝑡𝑎𝑛 𝜃  

                                  ∴ 𝑐𝑠𝑐 𝛾    √𝑐𝑜𝑡 𝜃 𝑐𝑠𝑐
 휀     .                                    5  

Using  9  and   0 :  

                          𝐷    (𝑧     − 𝑧   ) 𝑐𝑠𝑐 𝛾   .                                    6  

Where 𝑧      and 𝑧    are constants. From   5  and   6 : 

𝐷    (𝑧     − 𝑧   )√𝑐𝑜𝑡 𝜃 𝑐𝑠𝑐
 휀     ∎. 

6.4. Surfaces of Revolution   

Theorem (9): An input circular horizontal alignment results in a discrete analog of 

a surface of revolution. 

Proof: For a row i of a conical mesh as shown in Fig. 24: 𝑧    𝑧      and 𝜃  are 

constants. As a circle is discretized by a regular polygon. ∴ 휀    휀  for 𝑗  

0    𝑛 −  . ∴ From theorem (8) 𝛾    𝛾  and 𝐷    𝐷 . Then, each lattitude 𝑖    
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is a discrete circle whose center lies above the center of lattitude 𝑖. Hence, each 

lattitude is a discrete circle whose center lies on the surface axis∎. 

 

Fig. 24: One row of a discrete analog of a surface of revolution. 

7. Discussion   

The interpolation methods in section 3 were used in the implementation of the input 

horizontal and vertical alignments. Interpolation enables making variations in the 

geometric forms of input alignments. 3D Solid analytic geometry was used in the 

implementation of the required valence 4 dominant conical mesh. It is clear that the 

resulting surface varies according to the input horizontal and vertical alignments. 

8. Conclusion   

Our research work produced new implemented algorithms for constructing discrete 

analog of curves. They were used as inputs for the main algorithm of shape 

recognition with conical meshes, definitely as initial horizontal and vertical 

alignments for the produced surfaces. The resulting surface curvature varies 

according to the input initial horizontal and vertical alignments. Solid analytic 

geometry was used for deriving new theorems related to Architectural Geometry. 

The developed program has the ability to be developed for producing surfaces from 

more advanced initial horizontal and vertical alignments or from nonplanar curves. 

These surfaces are needed in both of architectural roofs and facades. 
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