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  Abstract— This paper addresses the issue of classifying local gear faults that 

depends on vibration signal measurements. Most of the early gears fault detection 

and diagnosis methods result insufficient results when dealing either with time or 

frequency domain characteristic. In order to overcome these obstacles, a Time-

Frequency based approach implemented on Field Programming Gate Array (FPGA) 

is proposed. The presented approach combines Bagged Trees Classifier (BTC) with 

Complex Analytic Wavelet Transform (CAWT) analysis. Moreover, the presented 

approach benefits from the superior realization nature of FPGA. Extensive 

simulations and experiments have been conducted in order to demonstrate the 

efficiency of the proposed approach. Experiments are performed on bevel gearbox 

with both normal and one missing tooth. The obtained results clarify that the 

presented approach has a superior classification accuracy rate over the other 

comparative approaches.  
   

  Index Terms— Bevel gears, fault detection, complex analytic wavelet transform, 

vibration analysis, bagged trees algorithm, feature extraction, FPGA. 

1. INTRODUCTION 

Vibration measurements are regularly used in the rotating machine diagnostics field 

since changes in the condition of the machine are instantaneously reflected in the 

vibration[1]. However, changes in the machine condition (i.e. developing faults) are 

usually concealed by dominant components within the vibration signal, such as the
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gear mesh frequencies, changes in operating conditions and noise. Sophisticated 

signal processing techniques are required to extract the characteristics or machine 

condition features that reflect the condition of the machine from the vibration 

signal.  

Recently, Preventive Maintenance (PM) approach has attracted substantial 

attendance from many researchers from the field of vibration signal analysis. It 

assesses to maximize life cycle and cost optimization of rotary machinery 

components, also the early detection can get to maximize production capacity.  

 

As all mechanical components are not run forever, failure in gearbox will directly 

out the machine from the service, which directly impacts on the production line. 

Sometimes it can stop the production line completely. Thus improving the reliability 

of gear could play a critical role in preventing unplanned failure. 

Unexpected breakdown made the maintenance inefficient and costly for asset 

management. To overcome this situation, the prevented maintenance is used. 

Preventive maintenance involves the systematic inspection of equipment where 

potential problems are detected and corrected in order to prevent equipment failure. 

The PM is maintenance that is regularly performed on a piece of equipment to 

lessen the likelihood of it failing. PM is performed while the equipment is still 

working so that it does not break down unexpectedly[2]. The maintenance is 

scheduled based on a time or usage trigger. The frequency of preventative 

maintenance is most likely to be too high, which sacrificing reliability. 

 

Time domain analysis based on statistics features such as the Crest Factor (CF), 

kurtosis, and Root Mean Square (RMS) can be used to capture changes in the 

machine condition due to an evidence of a fault. In [3], the authors combine the Fast 

Dynamic Time Warping (Fast-DTW) as well as the Correlated Kurtosis (CK). The 

work in [3] shows, a significant increase in its value in presence of gear tooth fault. 

The CK sensitive to the fault signature. In [4], the authors use condition indicators 

(RMS, peak) provide information that something has happened at variance with 

order analysis provides information about what has happened. In addition, it figures 

out that the condition indicator in fault beginning of the gearbox does not track the 

condition of the gearbox well during the test, e.g., the crest factor.  Investigations on 

(FM0, FM4, NA4, NB4, and NA4) shows FM0 follows the trend of the crest factor. 

The trend of FM4, NA4, and NB4 are similar, which reflect how difficult to clarify 

the cause of the changes within the features which make the time domain features 

inappropriate for diagnostics in fluctuating operating conditions. 

 

The work done in[3] offers a significant results out from measurements done on 

vibration signal to  detect the local gear faults, the combination between the Fast-

DTW as well as the CK techniques approach to this new time-domain  fault 

detection method combines of the proposed approach investigations done to check 

the performance and applicability using analytical and dynamic simulation on  

planetary gear systems. The mathematical modeling, simulation and experimental 



 

A.M. Bassiuny /et al/ Engineering Research Journal 160 (December 2018) M56 – M74 

 

M58 

 

results presented in this work approach a useful developing automatic diagnostic 

algorithms to be applied to industrial systems that include both fixed axis as well as 

epicyclical gearboxes. 

 

IGBA, et.al. [5] focused on the use of peak and RMS values of vibration signals for 

two different gearboxes. Three algorithms signal correlation, extreme vibration, and 

RMS intensity models, which developed and validated using CM data logged from 

operational gearboxes. Furthermore, data collected from 10 different gearboxes to 

test its detectability of common failure modes in the gearbox. The results showed 

that signal correlation with RMS values is good for early detecting progressive 

failures such as bearing pitting or shaft cracks. On the other hand, this was not 

executable for detecting gear tooth fracture. Unlike RMS, the peak values were 

better at detecting gear tooth fractures using both the correlation and extreme 

vibration model.  

 

Ability to effectively represent and analyze data made by wavelets became more 

popular in mathematics and digital signal processing area. Wavelet basis functions 

are short non-zero oscillations in the time domain that are stretched (known as 

dilation) and translated. The wavelet transform is a time-scale distribution obtained 

by convolving classification ability and translated the vibration signal of interest. It 

must be remembered that the major concern is the description, representation, and 

reconstruction of functions. The time-scale distribution is well suited for non-

stationary signal analysis, denoising and singularity detection [6].  

 

The work done in[7] concerned with gear failure diagnosis based on wavelets, and 

image processing system for automatic fault detection and isolation. Various objects 

extracted from a set of product images the region of interest and some parameters 

calculated like area, major/minor axis length, orientation, diameter, convex area, 

Euler number. With a comparative study processed by time-domain waveforms, 

frequency spectrum, and Continuous Wavelet Transform (CWT) of the gearbox.  

Experimental analyses were done on gear and bearing in[8] using acoustic and 

vibration signals with near 100% accuracy with automatic nature in real-time 

monitoring practice. Filters applied on the geared system performs effectively in 

providing the information about multiple faulty teeth such as the angle between two 

damaged teeth using both kinds of signals. Filters applied on bearing, it’s figured 

out that the severity of defect cannot be estimated adequately using vibration and 

acoustic signals. The proposed system of filters has diverse stages of signal 

processing such as denoising, time-frequency analysis, and extraction of Smooth 

Envelope Signal (SES) followed by a sturdy peak detection technique. Wavelet 

Packet Transform (WPT) has been exploited to the denoised signal. 

 

An improvement did over classical Linear Discriminant Analysis (LDA) called , QR 

decomposition for Linear Discriminant Analysis (LDA/QR) introduced in[9]. It’s a 

two-stage algorithm. LDA/QR has a highly efficient way to maximize the 
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separation between different classes, as a first step. Secondly, keeping low 

time/space complexity as low as possible while addressing the issue of within-class 

distance. LDA/QR algorithm made a scalable solution over both classical LDA and 

a combination of LDA and Principal Component Analysis (PCA) techniques. A 

comparative study was done in [10] between Euclidean Distance Technique (EDT) 

and the Fisher Discriminant Analysis (FDA) applied on a planetary gearbox test rig. 

With 19 feature parameters, its figure out that FDA has a curial reflection on 

classification accuracy.  

 

In general, signal processing techniques such as time domain analysis, frequency 

analysis, and time-frequency analysis identified machine component faults. Fast 

Fourier Transform (FFT) converts time domain to frequency domain. FFT can be 

used to indicate the intensity of the frequencies in the spectrum. FFT cannot find the 

non-stationary transient information from the samples, which serves as the reason 

for focusing on the wavelet transform in this paper. 

This paper focused on local faults in bevel gear especially one missing tooth. For 

simplicity, Different speeds and constant load are considered. Also, there are some 

factors can’t be controlled perfectly, like temperature, humidity, the degree of wear 

and installation conditions. It must be noted that the learning process of BTC done 

in an offline condition. The figure (1) describes the workflow of the learning 

process. 

 

Figure 1 Offline Workflow Diagram 
 

2. Analytic Wavelet Signal Analysis  

Wavelet means “small wave”. Which mean a short duration finite energy. Hence, it 

should be time-limited. The wavelet 𝜓 is a function of zero average having energy 

concentrated in time as seen in equation (1). 
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∫ 𝜓(𝑡)
∞

−∞

𝑑𝑡  (1) 

In order to extract more time- frequency information, a set of wavelets can be 

generated from a mother wavelet 𝜓(𝑡), which is limited to finite space. It exists only 

for a short duration and releases a finite amount of energy. Daughter wavelets 

𝜓𝑎1,𝑎2
(𝑡) are generated by translation and dilation of wavelets, with parameters ‘𝑎1’ 

and ‘𝑎2’ correspondingly, equation (2). 

𝜓𝑎1,𝑎2
(𝑡) =

1

√𝑎1

𝜓 (
𝑡 − 𝑎2

𝑎1
)  (2) 

 

The continuous wavelet coefficients, denoted by 𝑊, are obtained from the CWT, 

calculated from, equation (3)[11]. 

𝑊(𝑎1, 𝑎2) =
1

√𝑎1

∫ 𝑥(𝑡)
∞

−∞

𝜓∗ (
𝑡 − 𝑎2

𝑎1
) 𝑑𝑡  (3) 

 

Where the complex conjugate of the mother wavelet basis function and the 

investigated signal are denoted by 𝜓∗ and 𝑥(𝑡), respectively. The proposed popular 

basis function for fault detection in rotary machines is Morlet is presented in figure 

(2), where the scaling and wavelet function is the low-pass and high-pass filter, 

respectively. 

 

Figure 2 Morlet Wavelet Basis Function  

 

The Analytic Wavelet Transform AWT is a distinguished condition of the CWT 

with the complex-valued Morlet wavelet, also it named Gabor wavelet. Equation (4) 

defines the complex-valued Morlet wavelet: 

𝑊𝟎(𝒕) =
𝟏

√𝜹𝟐𝝅
𝟒 𝒆𝒙𝒑(−

𝒕𝟐

𝟐𝜹𝟐
+ 𝒋𝜔𝟎𝒕) (4) 

 

Where δ represents the standard deviation of the Gaussian envelope of the mother 

wavelet, and ω0 represents the central frequency of the mother wavelet, which 

is    
3

2
π. Therefore, the center frequency of the scaled wavelet is 

ω0

𝒶
 which effected 

on the center frequency of the scaled wavelet is inversely proportional to the 

scale 𝒶. 

 

The AWT computes the inner products of the analyzed signal and a set of Complex 

Morlet Wavelets (CMW). This transform is called the AWT because the CMW are 

analytic, the power spectra of the Morlet wavelets are zero at negative frequencies. 

The resulting AWT coefficients are complex numbers. These coefficients measure 

the similarity between the analyzed signal and the CMW. The AWT is just one type 
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of complex continuous wavelet transform. It must be noted that the time and 

frequency resolutions of wavelets are adaptive, the AWT provides adaptive time 

and frequency resolutions. Conventional time-frequency analysis methods, such as 

the Short-Time Fourier Transform (STFT), only provide uniform time and 

frequency resolutions in the whole time-frequency domain. 

3. Feature Extraction 

The information about the health of the monitored Spectra-Quest Machinery Fault 

Simulator (MFS) is contained in the vibration signal. Statistical analysis techniques 

involve the extraction summarizing of features from the vibrational signature data 

could be used[12],and [13]:[15]. Ideally, these features are more stable and well 

behaved than the raw signature data itself. Features also provide a reduced dataset 

for the application of fault pattern recognition techniques. Before any feature can be 

calculated on the raw vibration data, the data must be conditioned or preprocessed. 

In this study conditioning based on the data acquisition unit. The features that used 

in this work were in time and time-frequency domain: Kurtosis, mean, R.M.S, peak, 

and CF. Figure (3) describes vibration-based gearbox condition analysis indicators 

flowchart. 

 

 
Figure 3 Vibration-Based Gearbox Condition Analysis Indicators Flowchart  

 

mk:@MSITStore:C:/Program%20Files%20(x86)/National%20Instruments/LabVIEW%202017/help/lvasptconcepts.chm::/aspt_stft.html
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3.1.1. Kurtosis 

Kurtosis defined as the fourth moment of the distribution and 

measures the relative peakedness or flatness of a distribution as 

compared to a normal distribution. Kurtosis is given by equation 

(5)[12]: 

𝑲 =
∑ [𝒚(𝒏) − 𝝁]𝟒𝑵

𝒏=𝟏

𝑵 ∗ (𝜹𝟐)𝟐
 

(5) 

Where  𝑦(𝑛) is the raw time series at point 𝑛, 𝜇 is the mean of the data, 

𝛿2 is the variance of the data, and 𝑁 is the total number of data points. 

Kurtosis values can be summarized by equation (6). 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = {

≈ 𝟑, 𝒏𝒐𝒓𝒎𝒂𝒍 − 𝒑𝒆𝒂𝒌 𝒅𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏
< 𝟑, 𝒇𝒍𝒂𝒕𝒕𝒆𝒓 𝒅𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏 𝒕𝒉𝒂𝒏 𝒏𝒐𝒓𝒎𝒂𝒍 𝒅𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏
> 𝟑, 𝒔𝒉𝒂𝒓𝒑𝒆𝒓 𝒅𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏 𝒕𝒉𝒂𝒏 𝒏𝒐𝒓𝒎𝒂𝒍 𝒅𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏

 (6) 

 

3.1.2. Mean 

The sample mean is an average value found in a sample. Mean is given 

by equation (7): 

�̅� =
∑ 𝒙𝒊

𝒏
 (7) 

Where �̅� is the sample mean, 𝒙𝒊 is all of the x-values, and 𝒏 is the 

number of items in the sample. 

3.1.3. Root Mean Square (RMS) 

RMS describes the energy content of the signal and uses to evaluate 

the overall condition of the components. RMS is given by equation (8) 

therefore, it is not very sensitive to an incipient fault but used to track 

general fault progression[4]. 

𝑿𝑹𝑴𝑺 = √
𝟏

𝑵
∑(𝑿𝒊

𝟐)

𝑵

𝒊=𝒐

 (8) 

Where: 

𝑿𝑹𝑴𝑺 Root Mean Square value of dataset 𝑿. 

𝑿𝒊  𝒊-th member of dataset 𝑿. 

𝑵 Number of points in dataset 𝑿. 

3.1.4. Peak  

The peak value is the maximum amplitude of the signals within a 

certain time interval. The peak can be calculated using equation (9).  

𝑿𝑷𝒆𝒂𝒌 = 𝒎𝒂𝒙(𝑿𝟏, 𝑿𝟐, 𝑿𝟑, … . , 𝑿𝑵) (9) 

http://www.statisticshowto.com/average/
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3.1.5. Crest Factor 

Crest Factor (CF) is the ratio of the single side peak value of the input 

signal to the RMS level[4]. CF can be calculated using equation (10). 

 

𝑪𝑭 =
𝑿𝑷𝒆𝒂𝒌

𝑿𝑹𝑴𝑺
 (10) 

4. Feature selection: 

Dimensionality reduction techniques transform the current feature space to a lower 

dimensional feature space by retaining most of the information content of the signal 

with respect to some criterion. The intrinsic dimension of the feature space can be 

significantly lower than the apparent or raw dimension of the features. This has a 

significant impact on the optimization of the models used to describe the feature 

space[16]. 

Linear Discriminant Analysis (LDA) aims to better discriminate patterns of 

different classes. For this distinguish characteristic, LDA is particularly suitable for 

solving problems of classification tasks. However, LDA pays no attention to the 

decorrelation of the data[17]. Lately, research community prefers LDA over 

Principal Component Analysis (PCA) because, LDA deals directly with 

discrimination between classes. On the other hand, PCA deals with the data in its 

entirety with poor attention to the underlying class structure[18]. As seen in figure 

(4) which adopted from [14], the LDA is in contrast with PCA as it is a supervised 

classifier. LDA identifies class membership, which leads to maximizing class 

separation. 

 

 

 

 

 

 

 

 
 

 Fisher-LDA considers maximizing the objective 𝑱  using equation (11). 

 

Figure 4  Illustrating The Different Concepts Between LDA and 

PCA[14] 
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𝑱(𝒘) =
𝒘𝑻𝑺𝑩𝒘

𝒘𝑻𝑺𝑾𝒘
 (11) 

 

Where 𝑱(𝒘) is Fisher discriminant, 𝒘 represents the linear transformation that 

maps the original t-dimensional space onto a f-dimensional feature subspace. 

𝑺𝑩 is the between classes scatter matrix, and 𝑺𝑾 is the within classes scatter 

matrix which can be defined as equations (12), and (13) where �̅� is the overall 

mean of the data-classes and 𝝁𝒄 is the mean of class. Because the scatter 

matrices are proportional to covariance matrices, it can define objective using 

covariance matrices. 

 In addition, projected data can be defined as equation (14). 

𝒚 = 𝒘𝑻𝒙 (14) 

To solve equation (15), a good solution is one where the class-means are well 

separated, measured relative to the sum of the variances of the data assigned 

to a particular class. This is precisely the objective because it implies that the 

gap between the classes expected to be big. Which adopt 𝒘 such that the 

denominator is 𝒘𝑻𝑺𝑾𝒘 = 𝟏 , since 𝒘 is a scalar itself. 

𝒘 = 𝑺𝑾
−𝟏(𝝁𝒄 − �̅�) (15) 

5. Machine learning 

Decision Tree 

In supervised machine learning, ensemble is popular because of the ability to 

accurate prediction. An ensemble method uses more than one classifier 

overall better accuracy. Classical ensemble bagging and boosting, have good 

predictive cap method was proposed by work in [19]. Study done in[20] 

shows how  Bagging Tree is able to identify two different diseases like 

Myocardial Infarction (MI), and Arrhythmia (AR) from normal patients with 

the cross-validation accuracy reaches 99.7%, and sensitivity near 99.4%, 

specificity of above 99.5%,  with a precision of 99.32%, and F1 gets a score 

of 99.36% from a single lead electrocardiography data. The proposed 

𝑺𝑩 = ∑(𝝁𝒄 − �̅�)(𝝁𝒄 − �̅�)𝑻

𝒄

 (12) 

𝑺𝑾 = ∑ ∑(𝝁𝒄 − �̅�)(𝝁𝒄 − �̅�)𝑻

𝒊∈𝒄𝒄

 (13) 
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algorithm can be realized in wearable form to fetch a real-time patient 

monitoring. The quality of sleep in the work[21] has a major impact on 

human health and his life quality. 

A classification based on bagged trees for sleep stages collected with a 

Continuous Wave (CW) Doppler radar investigated in this work. Experiments 

were done on people who asked to sleep all night with polysomnography. 

Nine labeled features extracted from the radar signals.  

Four kinds of tree classifiers were compared as the machine learning 

algorithms to classify sleeplessness, Rapid Eye Movement (REM) sleep, light 

sleep and deep sleep. Testing and validating done with 10-fold cross-

validation procedure was used to address the classifier performance.  

As a result, the bagged trees classifier has the best classification accuracy rate 

over the four classifiers. Which lead to improvement in accuracy rate can be 

reached to 78.6%. 

In bagging algorithm form original training data set N different samples called 

bootstrap samples [19] X1, X2… Xn are generated. A classifier Cn is built 

against sample Si. From classifier C1, C2… Cn, final classifier Cp is built 

whose output is the class predicted most classifiers. The bagging process is 

shown in figure (5) which adopted from[19]. 

 

 

 

 

 

 

 

 

 

 

 

 

Bagging trees are based on the bootstrap sampling. From the original dataset, 

we choose the S samples randomly as a training set which is the base learner. 

With N times repeating, we get a concord classifiers. The result is got from 

lump vote equation (14), which is introduced as follow: 

𝑪(𝒙) = 𝒂𝒓𝒈𝒎𝒂𝒙𝒋 ∑ 𝑪𝒊
𝒋
(𝒙)

𝒏

𝒊=𝟏

 (14) 

Where 𝑪𝒊
𝒋
(𝒙) is the result for n classifier. Table (1) summarizes the 

pseudocode for the Bagging Trees algorithm. 

 

Figure 5 The Bagging  Tree Flow Chart 
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Table 1 The Bagging Trees Algorithm Pseudocode 

1: Procedure:  Train. 

2: While Training time< 𝑁. 

3: 𝐷    ←Training Data set. 

4: Y     ←Output  for input X. 

5:  𝜎    ← Base Learning Algorithm. 

6: 𝑁    ← Training time. 

7: D = {(𝑿𝟏, 𝒀𝟏), (𝑿𝟐, 𝒀𝟐), … . , (𝑿𝒊, 𝒀𝒊)} 

8: For    𝒊 = 𝟏 𝒕𝒐 𝒏. 

9: 𝐂 = 𝜎(𝐷) 

10: Result: 

11: 𝑪(𝒙) = 𝒂𝒓𝒈𝒎𝒂𝒙𝒋 ∑ 𝑪𝒊
𝒋
(𝒙)

𝒏

𝒊=𝟏

 

6. Experimental Setup 

The experimental setup [22] is shown in figure (6) consists of a 3-phase, 1 HP 

variable speed induction motor, controlled manually by variable frequency driver 

with multi-featured front panel programmable controller. The motor speed can be 

varied from 0 to 3600 rpm. A three-way straight cut bevel gearbox with a 1.5:1 ratio 

is shown in figure (7) (a) and (b).  

The gearbox specifications are presented in table (2). It must be hinted that the gears 

were made from forged steel and the bearing used is (NSK 6202). 

 

 

 

                               Figure 6 Experimental Setup 
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Data collected from two locations as seen in figure (8), Bearing and gearbox 

housing. An adjustable magnetic brake working as a torque load ranging from 

(0.0565 to 1.1298 N.m) connected to the gearbox, which gets the power from two 

double grooves V-belt attached to a 25.4 mm shaft diameter with a torsional 

stiffness spring coupling. The vibration signal captured from the test rig by ICP 

(603C01) piezoelectric accelerometer with 104 mV/g actual sensitivity. Twice, 

firstly the data logged using (NI 9234 card) which connected to the laptop for online 

monitoring to test and handle problems faced in the begin of the experimental work 

algorithms. Secondly, it made a stand-alone system using Compact Reconfigurable 

Input Output (cRIO-9074) controllers which based on the LabVIEW RIO 

architecture, featuring a processor, reconfigurable FPGA, and I/O interface. 

Including programming environments LabVIEW[23]. Figure (9) shows faulty gears 

 

Figure 8 Accelerometer  locations 

Table 2 Gearbox Specification 

 Pinion Gear 

Pitch angle 33° 41' 56° 19' 

Pressure angle 20° 20° 

Pitch diameter 2.8575 4.28625 

Number of teeth 18 27 

(b) 

(a) 

Figure 7 (a) A Three-Way Gearbox And (b) Internal Construction 
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with 100% one removed tooth. Five input speeds (15rps, 20rps, 25rps, 30rps, and 

35rps) with constant load condition. 
 

 

 

 

 

 

 

 

 

 

 

7. Results: 

As for one missing tooth fault seen in figure (10), it has been figured out that data 

collected from Gearbox casing was more cleared than data collected from bearing 

housing. Also, it can be illustrated by the same figure that the power of impacts 

drops and noise increases as a natural result of power loss during transmitting with 

the pulley-belt mechanism. As a result, this paper focused on studying the vibration 

signals collected from the gearbox casing position. Vibration signals acquired by the 

FPGA, then processing by power spectrum using the FPGA and transmitted to the 

real-time embedded processor to get Analytic Wavelet, are shown in figures (11) (a) 

and (b), (12) (a) and (b), and (13) (a) and (b).  
 

  

Figure 10 One Missing Tooth Signal From (a) Gearbox Casing and (b) Bearing Housing  

 

 

  

Figure 11 Normal Condition (a) Time Domain Vibration Signal and (b) Power Spectrum  

 

 
Figure 9 One Missing 

Tooth Gear. 

(

a
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Figure 11 One Missing Tooth (a) Time Domain Vibration Signal and (b) Power Spectrum  

 

 

  
Figure 13 Both (a) Normal Condition and (b) One Missing Tooth Gearbox Analytic Wavelet  

 

For the sack of simplicity, in this work some parameters are assumed to be fixed, 

like splitting criteria, a number of splits, with no surrogate decision splits for simple, 

medium, and complex trees. Also, some fixed parameters did on Boosted, and 

Bagged Trees like, the maximum number of splits, learning rate, and number of 

learners. Table (3) recognize this parameter. The recognition rate for Trees can be 

clear in figure (13). 
 

Table 3 Fixed Parameters Taken in The Experiments Done by Decision Trees 

Decision Tree Split criterion 

Max 

number of 

splits 

Learning 

Rate 

Number of 

Learner 

Learning 

Consumed 

Time (Sec)  

Simple Tree 
Gini’s diversity 

index 

4 - - 0.01 

Medium Tree 20 - - 0.00 

Complex Tree 100 - - 0.00 

Boosted Trees AdaBoost 
20 0.1 30 

0.02 

Bagged Trees Bag 0.08 
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The selection of Compact RIO target FPGA consider the required resources for 

implementing the approached algorithm, the result provides true parallel processing 

with the performance and reliability benefits of FPGA implementing circuitry. 

Because there is no operating system on the FPGA chip, the code is implemented in 

a way that ensures maximum performance and reliability. 

The architecture software application is designed under a hierarchical form figure 

(14). LabVIEW environment allows code development for FPGA. Also, the real-

time processor communicates internally with the FPGA using a high-speed bus 

circuit. 

 

 
Figure 14  Organizing Of The LabVIEW Application. 

 

 
Figure 13 Recognition Rate of Bagged Decision Tree at Scale 1 Wavelet 
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The acquired information is analyzed by the proposed accelerometer sensor that is 

implemented in proprietary Xilinx Spartan 3 2M NI FPGA platform running at 40 

MHz Table (4) summarizes the resource usage of the FPGA. 
 

Table 4 Resources Usage of The FPGA 

Resource utilization Xilinx Spartan 

Slices 2457/20480 (12%) 

Flip-flops 820/40960 (2%) 

4-input LUTs 4502/40960 (11%) 

Maximum operation frequency 53.012 MHz 

8. Validate the Purposed System  

The proposed detection methodology used in this work was validated using 

experimental gearbox data collected from industrial straight cut bevel gearbox as 

seen in figures (15) (a) and (b). Two industrial straight cut bevel gearboxes are used 

to validate the proposed technique, with both normal and one missing tooth 

conditions. The gearboxes driver and driven had 11, and 38 teeth respectively. 
 

Figure 15 Driver and Driven Gears in Both (a) Normal Condition and with (b) One 

Missing Tooth Condition 

An artificial tooth reshaping was created by grinding the tooth completely of the 

driver gear to simulate the missing tooth scenario as shown in figures (16) (a) and 

(b)  . 
 

Figure 16 Driver Gear in (a) Normal Condition and with (b) One Missing Tooth 
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9. Conclusion  

This research work introduced local bevel gearbox faults classifier that depends on 

vibration signal measurements through an FPGA-based implementation that 

provides an efficiently real-time online portable application to condition monitoring 

community. The conclusions of this work can be summarized as follows: 

 

1. The Increase in the frequency scale of the Analytic Wavelet Transform 

(AWT) tends to decrease the center frequencies of the wavelets which 

in turn reflected on the computation time of AWT. In another way, the 

increasing scale of AWT leads to increase in computational time. 

2. Changing the frequency level of the AWT has no effect on the 

performance of the classifier. 

3. Bagged decision trees classifier showed its superiority over the 

backpropagation neural network in both training time and a number of 

features used. 

4. The strength of the signal remains at the same level even if the number 

of broken teeth increases however, it increases the number of peaks. 

5. Contrary to expectations from literature review results showed that 

LDA algorithm is much better than the PCA algorithm in features 

selection. 

6. The strength of the signal increases as a result of increasing the speed 

of gearbox. 

7. AWT gives a great indication with respect to nonstationary operating 

conditions caused by tooth missing. 

8. Increasing speed of the gearbox affect directly on the signal captured in 

the terms of amplitude, noise rates, and a number of cycles per time.  

9. The use of the FPGA appears to be the best in terms of computational 

time compared to traditional multi-core Processor as expected.  

10. With the help of a LabVIEW program and implementation on NI 

hardware, it can be easy to develop advanced techniques for fault 

detection embedded system. 
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