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ABSTRACT 
Though they are naturally anisotropic and heterogeneous, the mechanical behavior 

of masonry walls in the micro modeling for the purpose of nonlinear analysis, can 

be simplified by adopting the homogenization technique. In this, the Cartesian 

coordinates coincide with the bed joint and in perpendicular (in the direction of the 

head joint); then, the wall is treated as an orthotropic material. In this paper, the 

development of a ten parameters failure criterion is presented; where the parameters 

are obtained from experimental tests. The tests of Page are used to show how the 

procedure of regression analysis can be performed for a better prediction of the wall 

strength. The obtained results show the effectiveness of the homogenization 

technique and the reliability of the proposed regression procedure in the 

development of the failure surface. The proposed failure criterion allows the use of 

continuum damage mechanics and the incremental approach for tension and 

compression regimes by inserting damage variables to the criterion. The proposed 

failure surface and preliminary results show the potential of modeling masonry 

under biaxial state of stress.   
 

Keywords: Masonry walls; Failure criterion (surface); orthotropic material; plane 

stress; damage; regression analysis.  

 

1. INTRODUCTION 
The mechanical behavior of masonry walls in structures has been a focus of interest 

in the last decades. Masonry is a composite anisotropic material with different 

directional properties as a result of its constituent components; e.g., bricks and 

mortar joints. For the nonlinear analysis of masonry walls, which are anisotropic, 

with the aid of the Finite Element Method, there are two concepts; the homogenized 

and the discrete formulations. In the latter, the bricks and joints, which represent 

lines of weakness in the wall, are discretized and hence the mesh is complex, which 
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demands excessive computation effort. This approach is referred to as the micro 

modeling. In order to overcome the disadvantages of a detailed discretized 

modeling a homogenization of the brick/mortar assemblage can be performed, 

obtaining a good correlation between experimental and numerical curves. In this 

approach, the Cartesian coordinates coincide with the bed joint and in perpendicular 

(in the direction of the head joint). The effectiveness of such a technique has been 

demonstrated by several authors such as Lopez et al. (1999), Anthoine (1995), and 

Sacco (2009). This approach is referred to as the macro modeling, which is adopted 

here. 

In the current research the homogenization technique is adopted, which 

means that the overall behavior of the masonry panel will be evaluated. Suquet 

(1985) defined the homogenization technique as: “the procedure of replacing a 

strongly heterogeneous material by a homogenous material similar to the previous 

one within the normal range”. Unlike a micro-model where bricks and mortar are 

separately modeled a homogenized model represents an efficient method to predict 

the overall nonlinear behavior of the masonry panel.  

In the homogenization technique a periodic unit cell is identified so that its 

repetition generates an entire masonry panel and its behavior is analyzed as an 

individual problem in such a way to know the average values of the masonry panel 

as a single homogeneous material based on the actual geometrical and mechanical 

characteristics of the constituent material (Quinteros, et al., 2012). In addition, a 

periodic unit cell could be used as well to perform a limit analysis for the prediction 

of collapse loads and homogenized failure mechanisms, such as Milani (2010), 

Milani and Bucchi (2010) and Milani et al. (2010) modelling bricks, joints, filling 

resin and glass fiber reinforced polymer rods for out-of-plane step loads. 

For understanding the mechanical behavior of masonry walls and for 

performing a nonlinear structural analysis, the failure criterion of the material is the 

key. In the case of masonry walls the uncertainty associated with the mechanical 

properties represents a major challenge. 

In this paper, a failure criterion is developed for masonry walls in which the 

homogenization concept is adopted. Nevertheless, the wall is treated as an 

orthotropic material where the properties of the wall is considered uniform in the 

bed direction and in the direction perpendicular to the bed. The wall is treated as a 

plane stress problem with the properties of the wall uniform through its thickness. 

 

2. MODEL DEVELOPMENT 
2.1 Background 

The experimental work of Page (1981) on masonry formed the foundation for many 

researchers to verify their work. The orientation of the bed joint to the applied 

principal stress was found to influence the failure pattern only in those cases in 

which one principal stress was dominant. In all his tests, he used half-scale brick 

masonry. The bed joints inclination to the principal stresses was studied under 

different angels; 0°, 22.5°, 45°, 67.5°, and 90°, Fig. 1. 
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Figure 1 Failure of brickwork under biaxial compression by Page (1981). 

 

Dhanasekar et al. (1985) proposed the following failure surface using a 

quadratic polynomial from Page’s experiments. 

f(σl) = 𝐴𝜎𝑛
2 + 𝐵𝜎𝑝

2 + 𝐶𝜏2 + 𝐷σ𝑛σ𝑝 +  Eσ𝑛 + Fσ𝑝 − 1 = 0                                 (1) 

The constants A, B, C, D, E, F define the elliptical cone proposed by Dhanasekar, 

and are evaluated so that if the stress point lies outside the failure surface the left 

hand side of Eq. (1) is negative. The subscripts n and p of the stress σ stand for the 

stresses normal and parallel to the bed joints and τ is the shear stress. 
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The principal stress directions of the test data were transformed into normal and 

parallel to the direction of the bed joint. A reasonable approximation was achieved 

in a comparison with the test data. According to the author, inconsistencies took 

place in the corner of the plots.  

Lourenco (1995 and 1998) proposed an isotropic continuum model, where a 

Hill yield criterion was used in compression and a Rankine yield criterion in 

tension, Fig. 2. 

 

 
Figure 2 Lourenco’s composite yield surface (Lourenco, 1995 and 1998). 

 

Syrmakezis and Asteris (2001) also described the failure surface using a cubic 

polynomial to describe both tension and compression regimes in a masonry panel. 

The directions of the tests were transformed this time to the x- and y-directions. The 

equation obtained by the authors showed better compliance with the test data and 

also at the corners of the plots. The cubic polynomial is a better approximation than 

the quadratic polynomial. 

 

2.2 Basic Conditions 

A failure surface should satisfy the following conditions: 

 It has to be a closed surface; 

 For stability it should have a convex shape (Hill, 1950, and Prager, 1959); 

 It should satisfy uniqueness; and 

 The computation of singular points “corners” on failure surface has to be 

avoided by a suitable choice of a continuous surface (Zienkiewics et al., 

1969). 

These conditions are considered in the following development for a plane stress 

orthotropic failure surface. 

 

2.3 Mathematical formulation 

The most general failure criterion available for anisotropic material is the tensor 

polynomial. Tsai and Wu (1971) proposed a cubic polynomial as a failure criterion 
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for anisotropic composite materials. The general equation for a cubic polynomial is 

given by Eq. (2), 

f(σℓ) = aiσi + aijσiσj + aijkσiσjσk + ⋯ − 1 = 0                                                  (2) 

where ℓ=1, 2, …, 6,  i, j and k designate 1, 2, …, 6. The ai, aij and aijk are material 

property coefficients. This polynomial has been the base for models applicable to 

masonry walls for decades. 

Eq. (2) can be simplified for the case of plane stress and considering that a 

cubic formulation is adequate to represent the failure surface (Syrmakezis and 

Asteris, 2001), as given by Eq. (3), 

f(σℓ) = a1σ1 + a2σ2 + a6σ6 + 𝑎11σ1
2 + a12σ1σ2 + a16σ1σ6

+ 𝑎22σ2
2 + a26σ2σ6 + a21σ2σ1 + 𝑎66σ6

2 + a61σ6σ1

+ a62σ6σ2 + a111σ1
3 + 𝑎112σ1

2σ2 + 𝑎116σ1
2σ6 + 𝑎121σ1

2σ2

+ 𝑎122σ1σ2
2 + 𝑎126σ1σ2σ6 + 𝑎161σ1

2σ6 + 𝑎162σ1σ2𝜎6

+ 𝑎166σ1σ6
2 + 𝑎211σ1

2σ2 + 𝑎222σ2
3 + 𝑎212σ1σ2

2    
+  𝑎216σ1σ2σ6 + 𝑎221σ1σ2

2 +  𝑎226σ2
2σ6 + 𝑎261σ1σ2σ6

+ 𝑎262σ2
2σ6 + 𝑎266σ2σ6

2 + 𝑎611σ1
2σ6 + 𝑎612σ1σ2σ6

+ 𝑎616σ1σ6
2 + 𝑎621σ1σ2σ6 + 𝑎622σ2

2σ6 + 𝑎626σ2σ6
2

+ 𝑎661σ1σ6
2 + 𝑎662σ2σ6

2 + 𝑎666𝜎6
3 − 1 = 0 

1.        

(

3

) 

Upon considering the bed direction as the x-axis, the normal to the bed as the 

y-axis and the out of plane as the z-axis; thus, the material representing the wall is 

assumed to be isotropic in the positive x- and y-directions. Then, the following can 

be assumed, 

 For plane stress state (z = xz = yz = 0); 

 Since the material is isotropic in every respective direction, x-, y- and z-

direction, symmetry leads to (aijk = aikj = ajik = akij = akji and aij = aji); 

 The material under given shear loading possesses a common shear strength 

for both positive and negative direction of shear loading. Therefore, all 

terms containing xy and (xy)
3
 will be excluded from the equation; and 

 Furthermore the redundant terms (x)
3 

and (y)
3 

are neglected. 

Syrmakezis and Asteris (2001) implemented the aforementioned assumptions into 

Eq. (3), reducing the equation to the following cubic polynomial in 𝜎𝑥, 𝜎𝑦 and 𝜏𝑥𝑦. 

2. 𝑓(𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦) = 𝑎1𝜎𝑥 + 𝑎2𝜎𝑦 + 𝑎3𝜎𝑥
2 + 𝑎4𝜎𝑦

2 + 𝑎5𝜏𝑥𝑦
2 + 𝑎6𝜎𝑥𝜎𝑦 +

𝑎7𝜎𝑥𝜎𝑦
2 + 𝑎8𝜎𝑥

2𝜎𝑦 +  𝑎9𝜎𝑥𝜏𝑥𝑦
2 + 𝑎10𝜎𝑦𝜏𝑥𝑦

2 − 1 = 0                                                           

(4) 

Eq. (4) was found by Syrmakezis and Asteris (2001) to fit reasonably well Page 

tests (Page, 1981). 

 

3. EVALUATION OF THE MODEL PARAMETERS FROM TESTS 
3.1 Approach 

The ten parameter model failure criterion in Eq. (4) requires 10 tests at least in order 

to estimate the parameters. These tests should include all the possible cases of stress 

combinations; axial tension (compression) in the two directions, pure shear and 

combinations of the three stress components. As a result of the variability of the 
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strength of masonry walls ten tests will not reflect the average properties of the wall 

unit. Hence, the number of tests is expected to be much larger than 10 and hence a 

regression analysis will be an essential procedure for the evaluation of the model 

parameters. 

Upon substitution with the results of every test, 𝜎𝑥, 𝜎𝑦 and 𝜏𝑥𝑦, a number of 

equations equal to the number of tests can be obtained. Since the number of 

equations will exceed the number of unknowns, model parameters, no unique 

solution can be derived. The deviation of the value of the function 𝑓(𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦), 

Eq. (4), from zero, upon substitution of any test results, represents an error. The 

solution obtained from regression analysis for the model parameters, 𝑎1, 𝑎2, … 𝑎10, 

is based on the  minimization of the sum of squares of errors. 

 

3.2 Regression based on prescribed boundary conditions 

Regression analysis aiming to determine that many unknowns, ten in this case, with 

a large number of test data is unlikely to result in accurate estimates of these 

unknowns. Therefore, boundary conditions of the five mono-axial tests will be 

introduced separately leading to the determination of five unknowns; hence, the 

failure surface is enforced to go through these points.  

The mono-axial tests represent the boundary conditions and these are: 

i. Pure compression in the x- and y-directions; 

ii. Pure tension in the x- and y-directions; and 

iii. Pure shear. 

Upon introducing the results of the five mono-axial tests, the five constants 

a1, a2, a3, a4 and a5 can be calculated. The values of any test of the mono-axial tests, 

introduced into the calculations of these constants represent the average of the 

measured values of this test. These average values from Page tests are shown in 

table 1; in this case these values are the average of 4 sets of measurements. The 

other constants, a6 to a10, will be derived from regression analysis of the other test 

data. 

In order to describe the orthotropic material behavior in continuum damage 

mechanics, with the adoption of homogenization, a closed failure surface is crucial. 

According to Tsai and Wu (1971), this condition is satisfied if the total Gaussian 

curvature K is positive. 

𝐾 = −
1

(
𝜕𝑓

𝜕𝜎𝑥
)

2
+(

𝜕𝑓

𝜕𝜎𝑦
)

2

+(
𝜕𝑓

𝜕𝜏𝑥𝑦
)

2 𝐷 ;                                                                                (5) 

Therefore, 

𝐷 =

|

|

|

𝜕2𝑓

(𝜕𝜎𝑥)2

𝜕2𝑓

𝜕𝜎𝑥𝜕𝜎𝑦

𝜕2𝑓

𝜕𝜎𝑥𝜕𝜎𝑦

𝜕2𝑓

(𝜕𝜎𝑦)2

𝜕2𝑓

𝜕𝜎𝑥𝜕𝜏𝑥𝑦

𝜕2𝑓

𝜕𝜎𝑦𝜕𝜏𝑥𝑦

𝜕2𝑓

𝜕𝜎𝑥𝜕𝜏𝑥𝑦

𝜕2𝑓

𝜕𝜎𝑦𝜕𝜏𝑥𝑦

𝜕2𝑓

(𝜕𝜎𝜏𝑥𝑦)2

𝜕𝑓

𝜕𝜎𝑥

𝜕𝑓

𝜕𝜎𝑦

𝜕𝑓

𝜕𝜏𝑥𝑦

𝜕𝑓

𝜕𝜎𝑥
      

𝜕𝑓

𝜕𝜎𝑦
         

𝜕𝑓

𝜕𝜏𝑥𝑦
0

|

|

|

< 0 ;                                                         (6) 
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The constant a6 has to fulfill the condition (−√𝑎3𝑎4 <  
𝑎6

2
 < √𝑎3𝑎4 ) in order to 

ensure convexity, and in the same time results in the minimum sum of squares. 

Therefore, the value a6 should accordingly be selected within the mentioned range. 

 

4. EVALUATION OF THE MODEL PARAMETERS OF PAGE TESTS 
4.1 Transformation of the test data to Cartesian coordinates. 

In the following, a methodology for the calculation of the failure surface using the 

data released by Page (1981) is illustrated. Page (1981) tests were performed in the 

principal axes directions, Fig. 1. However, the weak lines in a masonry panel are the 

vertical and horizontal mortar joints. This explains the staggered type failure in 

biaxial loading and in general the failure in these lines. As stated before, the bed 

direction is assigned the x-axis, the normal to the bed is assigned the y-axis and the 

out of plane is the z-axis. Damage defined in the x- and y-directions incorporates 

tensile and compression failure in addition to sliding shear failure, which represents 

the most common types of failure in masonry. 

In order to develop an expression in the x-y-xy space, all tests performed 

by Page (1981) are first transferred into the Cartesian coordinates; the x-y plane. It 

is noted that the points on the curves with  = 22.5°, 45°, 67.5° do not have the 

same xy; hence, they are not in the same plane. In Fig. 3 the tests of Page are 

plotted with reference to the principal axes and in Fig. 4 these data are transferred 

into the x-y-xy space. 

 

4.2 Evaluation of the equation constants  

In order to determine the constant terms a1 to a5 the boundary conditions from 

mono-axial tests are used. The boundary conditions for Page mono-axial tests, 

calculated as the average of the measured results, are given in table 1. It is to be 

noted that, due to the lack of tension tests for the angles  = 22.5°, 45° and 67.5° the 

tensile behavior is approximated according to Samarasinghe et al. (1980). The 

tension tests were taken according to Page at  = 0 and the other angels are 

approximated according to the variation of the tensile failure criterion for each 

angle as shown in Fig. 5. 
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3. Figure 3 Failure points (Page tests) / 

Principal. 

4. Figure 4 Failure points (Page tests) / 

Cartesian. 
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5. Figure 5 Tension failure criterion according to Samarasinghe et al. (1980). 

 

From the boundary conditions in table 1 of Page’s mono-axial tests the first 

five constants a1 to a5 are calculated. 

a1 = 2.271, a2 = 9.868, a3 = 0.573, a4 = 1.324 and a5 = 6.25. 

Then, the constant a6 should be assumed as explained in the previous section. For 

the failure surface to be closed and convex, the constant a6 is selected to be a6=-0.6 

which results in the least sum of squares. Afterwards, regression on Page’s test data 

should be performed in order to determine the other constants. 

 

6. Table 1 - Boundary conditions for Page (1981) mono-axial tests 

Constant 
Uniaxial and Pure Shear Tests 

x y xy 

a1 -4.3 0 0 

a2 0.4 0 0 

a3 0 -7.55 0 

a4 0 0.1 0 

a5 0 0 0.4 

 

The total number of Page’s tests is 186 for the different angels as shown in 

Figs. 3 and 4. Regression analysis is sensitive to the choice of data; therefore, three 

approaches have been followed in order to determine the appropriate procedure for 

performing regression. In the first approach, regression was carried out using the 

186 tests at once. In the second approach, for each set of tests (load combination 

and inclination angle) the average values were calculated making 52 data point on 

the surface representing the average of all sets of experiments, and these data points 

were used. This second approach was found to give better fit of the tests since 

numerical errors are significantly reduced. 
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In the third approach, it was found efficient to separately perform regression 

on the curve for the results of each inclination angle  of Page’s experimental tests. 

Then, from each curve of such angle 9 points are generated and then transformed 

into the x, y, xy space. From the regression of the points of the five angles, the 45 

points in table 2, the remaining four constants of the global equation are evaluated. 

 

Table 2 - 45 Points used in Regression calculated from fitted equations 

  

1 2  xy σx σy

0.000 -7.550 0 0.00 0.00 -7.55

-1.000 -8.151 0 0.00 -1.00 -8.15

-2.500 -8.699 0 0.00 -2.50 -8.70

-5.000 -8.919 0 0.00 -5.00 -8.92

-8.000 -8.189 0 0.00 -8.00 -8.19

-10.850 -5.542 0 0.00 -10.85 -5.54

-10.000 -2.568 0 0.00 -10.00 -2.57

-7.500 -0.959 0 0.00 -7.50 -0.96

-4.300 0.000 0 0.00 -4.30 0.00

0.000 -5.400 22.5 1.91 -0.79 -4.61

-1.000 -6.782 22.5 2.04 -1.85 -5.94

-2.000 -7.659 22.5 2.00 -2.83 -6.83

-4.500 -8.778 22.5 1.51 -5.13 -8.15

-8.500 -8.642 22.5 0.05 -8.52 -8.62

-10.000 -5.153 22.5 -1.71 -9.29 -5.86

-8.000 -2.810 22.5 -1.83 -7.24 -3.57

-5.000 -0.770 22.5 -1.50 -4.38 -1.39

-3.300 0.000 22.5 -1.17 -2.82 -0.48

-5.200 0.000 45 -2.60 -2.60 -2.60

-7.000 -1.155 45 -2.92 -4.08 -4.08

-8.000 -2.111 45 -2.94 -5.06 -5.06

-9.400 -4.585 45 -2.41 -6.99 -6.99

-8.500 -8.421 45 -0.04 -8.46 -8.46

-5.000 -9.397 45 2.20 -7.20 -7.20

-2.000 -7.849 45 2.92 -4.92 -4.92

-1.000 -6.779 45 2.89 -3.89 -3.89

0.000 -5.200 45 2.60 -2.60 -2.60

-5.600 0.000 67.5 -1.98 -0.82 -4.78

-7.500 -1.041 67.5 -2.28 -1.99 -6.55

-8.500 -2.123 67.5 -2.25 -3.06 -7.57

-9.300 -4.800 67.5 -1.59 -5.46 -8.64

-8.500 -8.541 67.5 0.01 -8.53 -8.51

-5.500 -10.651 67.5 1.82 -9.90 -6.25

-2.500 -8.145 67.5 2.00 -7.32 -3.33

-1.000 -6.466 67.5 1.93 -5.67 -1.80

0.000 -2.800 67.5 0.99 -2.39 -0.41

-7.550 0.000 90 0.00 0.00 -7.55

-8.000 -0.690 90 0.00 -0.69 -8.00

-8.700 -2.330 90 0.00 -2.33 -8.70

-9.000 -4.200 90 0.00 -4.20 -9.00

-8.000 -8.413 90 0.00 -8.41 -8.00

-5.500 -10.680 90 0.00 -10.68 -5.50

-2.500 -9.742 90 0.00 -9.74 -2.50

-1.000 -7.468 90 0.00 -7.47 -1.00

0.000 -4.300 90 0.00 -4.30 0.00
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Regression is performed as stated by the third approach, 45 points, leading to the 

following proposed equation, 

2.271𝜎𝑥 + 9.868𝜎𝑦 + 0.573𝜎𝑥
2 + 1.324𝜎𝑦

2 + 6.25𝜏𝑥𝑦
2 − 0.6𝜎𝑥𝜎𝑦 − 0.0136𝜎𝑥𝜎𝑦

2 −

0.0077𝜎𝑥
2𝜎𝑦 + 0.268𝜎𝑥𝜏𝑥𝑦

2 + 0.328𝜎𝑦𝜏𝑥𝑦
2 − 1 = 0                                                (7) 

The obtained failure surface of Page’s tests is schematically illustrated in Fig. 6 in 

x-y-xy space. 

 

7.  
8. Figure 6 Failure surface (x - y - xy space). 

 

4.3 Comments on the Results 

The results of different approaches are shown in Fig. 7 for the case of (x and y 

plane (xy =0) and in Fig. 8 for the case of ((x = y)-xy). The proposed failure 

criterion gives better results considering the compatibility with Page results. As 

shown in the figure the proposed equation, using the 45 points, give better results 

than the other aproaches. In Page’s experiments the maximum shear stress (ranges 

between 3.0 to 3.6 MPa and occurs at a normal stress (x = y ≈ 4.3 MPa), Fig. 8. 

The equation obtained from the 45 points represents the test points better 

than Syrmakezis and Asteris equation (2001), Figs. 7 and 8. It is obvious that a 

closed surface depending on one equation is more efficient numerically than a 

surface consisting of two intersecting yield surfaces, Fig. 2. The closeness of the 

proposed surface to the experimental tests of Page, which is evident in Figs. 7-9 

gives confidence in the proposed modeling of masonry walls. The cubic polynomial 

which resulted in a closed surface is crucial for applying continuum damage 

mechanics and the incremental approach needed to describe the orthotropic 

materials in the post-peak domain. 
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Figure 7 Plot at  = 0 for the evaluated equations. 

 

 
Figure 8 (x = y)- xy plane for the different equations. 
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Figure 9 Regression of 45 Points at different shear levels,  = variable. 

 

5. DAMAGED FAILURE SURFACE 
5.1 Effect of Damage on Failure criteria 

For composite, homogenized and orthotropic materials, damage can be accurately 

represented by a second-order tensor with the principal directions aligned with the 

orthotropic directions (Barbero and Lonetti, 2001). The homogenized masonry 

panel represents a two dimensional plane stress problem. Hence, the two 

dimensional damage tensor [𝐷] is 

[𝐷] = [
𝑑𝑥 0
0 𝑑𝑦

]                                                                                                        (8) 

where the variables 𝑑𝑥 and 𝑑𝑦 designate damage in the x- and y-directions, 

respectively. 

 In order to account for damage the solution procedure has to be written in an 

incremental form. After introducing damage into the calculated failure criterion, Eq. 

(4), the peak value has to continuously be calculated according to the stress-state 

and damage at every solution increment. The line from the origin through the 

current stress state intersects the failure surface (the damaged failure surface, 𝑔̂) in 

the peak stress values in both directions. 

𝑔̂ = 𝑎1
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𝑎9
𝜎𝑥𝜏𝑥𝑦

2

(1−𝑑𝑥)2(1−𝑑𝑦)
+    𝑎10

𝜎𝑦𝜏𝑥𝑦
2

(1−𝑑𝑥)(1−𝑑𝑦)2
− 1 = 0  

Since the shear damage in a masonry panel is a stepped crack through the head and 

bed joints, the shear damage can be introduced by two components; one in the x-

direction and the other in the y-direction as in Eq. (9).  

 

5.2 Variation of Damage in the x- and y-Directions  

At any biaxial stress state the strength can be calculated in the x- or y-direction from 

the failure surface. Figures 10 and 11 show the biaxial effect on the strength with 

respect to the uniaxial strength. For instance, such effect on the ultimate strength in 

the y-direction is obvious in Fig. 10, upon comparing with the uniaxial strength. As 

for Fig. 11, the biaxial effect on the ultimate strength in the x-direction, is very 

significant. As can be seen from the results in Figs. 10 and 11, the biaxial effect 

varies in both directions which is very interesting in highlighting the orthotropic 

material characteristics of masonry walls.  

 

 
10. Figure 10 Biaxial effect on the strength in y- direction w.r.t. uniaxial 

strength. 
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11. Figure 11 Biaxial effect on the strength in x- direction w.r.t. uniaxial 

strength. 

 

Figures 12 to 14 show the failure surface for different levels of damage in the 

x- and y-directions. Damage alters the failure surface in such a way that the peak 

stress is different for every increment. Therefore, it is crucial to recalculate the peak 

stress value for every increment based on the corresponding confinement and 

damage levels. This should be calculated using the current stress state of the 

material and the current failure envelope. 

 

12.  
13. Figure 12 Change of failure surface with damage dx = dy (isotropic damage). 
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14. Figure 13 Change of failure surface with damage dx=0.1 and dy-variable. 

 

 
15. Figure 14 Change of failure surface with damage dx=0.2 and dy-variable. 
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6. CONCLUSIONS 
Sufficient experimental data and the proper choice of the test data are very 

important to find a suitable expression to model the failure surface of masonry. The 

third degree polynomial was found appropriate and efficient in describing the 

failure surface of masonry since it can account for the orthotropic behavior and the 

confinement effect. Introducing damage to the failure surface allows for correct 

modeling of the orthotropic material under damage. The method of energy 

equivalence describing damage has proven efficient in the numerical modeling and 

therefore it can be used in masonry wall modeling. The potential of the proposed 

failure surface in the numerical analysis is evident, especially when applying 

continuum damage mechanics and the homogenization technique.  
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