
Emad Abdallah Sayed/Engineering Research Journal 175 (September 2022) PH27 – PH41 

 

 

* Corresponding author. ORCID: 0000 – 0001 – 5691 – 4993 

* Corresponding author. E-mail address: (AHMED_BADR@m-eng.helwan.edu.eg)  

 

Using An accelerated Technique of The Laplace-Adomian Decomposition 

Method in Solving A class of Non-linear Integro-differential Equations   

 

Ahmed Y. Sayeda,*, Emad A. Sayeda, Mahmoud H. Rashwana, I. L. El-Kallab 

a
  Physics and Engineering Mathematics Department, Faculty of Engineering, Mattaria, Helwan University, Egypt. 

b
  Physics and Engineering Mathematics Department, Faculty of Engineering , Mansoura University , Egypt. 

 

Abstract 

      In this work we use an efficient technique based on Adomian Decomposition Method (ADM) and Laplace 

Transform to solve non-linear integro-differential equations. This method effectively handles non-linear 

integro differential equations of the first and the second kind. Finally, some examples will be discussed to 

support the proposed method. 
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1 Introduction 

     It is well known that linear and non-linear Volterra integral equations arise in 

many scientific fields such as the population dynamics, spread of epidemics, and 

semi-conductor devices. Volterra started working on integral equations in 1884, but 

his serious study began in 1896. Hence, there are numerous researchers that interested 

in studying this type of equations. A comparison was made between Adomian 

decomposition and tau methods in [1] for finding the solution of Volterra integro-

differential equations. In [2] the author used  a combined form of the Laplace 

transform method with the Adomian decomposition method to get the analytic 

solution  of the non-linear Volterra integro–differential equations of first and second 

kind. Rashed [3] studied integro–differential equations depending on Lagrange 

interpolation. The author [4] in studied by using Wavelet–Galerkin method for 

solving  integro–differential equations. Wazwaz [5] used a variety of powerful 
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methods in solving a non-linear integral and integro- differential equations and for 

making a comparative study.  

      Laplace transform technique in combination with Adomian decomposition 

method is presented and modified, which was first studied by Khuri in [6] to solve 

non-linear differential equations. In [7], the authors investigated the method for 

solving coupled non-linear partial differential equations. Elgasery  [8] applied the 

Laplace decomposition method for the solution of Falkner–Skan equation which 

describes two dimension incompressible laminar boundary layer equations. Laplace 

decomposition method was employed to logistic differential equations to find the 

numerical solutions in [9]. Chanquing and Jianhua studied the Adomian 

decomposition method to solve the non-linear fractional differential equations in [10]. 

      In [11], the technique was applied on delay differential equations. In  [12], the 

author  used a modified Laplace Adomian decomposition method (LADM) to solve 

the integro-differential equations. To overcome the non-linearity term used the 

traditional Adomian polynomials. Magdy and Mohamed [13] practiced Laplace 

decomposition method and Pade approximation to get the numerical solution of non-

linear system of partial differential equations. Further, a modified Laplace 

decomposition method was adopted for Lane-Emden type differential equations in 

[14]. The author [15] used a combined form of the modified Laplace Adomian 

decomposition method (LADM) to get the analytic solution of the non-linear 

Volterra-Fredholm integro differential equations of the first and second kind.  

     In this paper, we present Laplace Adomian Decomposition Method for solving the 

non-linear integro-differential equations in the form: 

𝑢(𝑖)(𝑥) = 𝑓(𝑥) + ∫ 𝑘(𝑥 − 𝑡)𝐹(𝑢(𝑡))𝑑𝑡.

𝑥

0

 (1.1) 

We consider the kernel 𝑘(𝑥, 𝑡) as a difference kernel the depends on the differences 

𝑥 − 𝑡, such as 𝑒𝑥−𝑡 , cosh(𝑥 − 𝑡) , and sinh(𝑥 − 𝑡). 

     This article is organized as follows: a brief introduction to our proposed method 

which depend on the modified Laplace Adomian decomposition method and the 

accelerated Adomian polynomial (El-Kalla polynomials). In section 3, the application 

of this method and numerical results are considered for the integro-differential 

equations by Laplace Adomian Decomposition Method (LADM) and making 

comparison tables. In section 4, ends this paper with the conclusions of our results. 
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2 The Modified Laplace Adomian Decomposition Method  

     In this section, we present steps of the proposed technique in solving non-linear 

integro-differential equations, which the approximated solution contains Adomian 

polynomial or El-Kalla polynomial. 

𝑢(𝑖)(𝑥) = 𝑓(𝑥) + ∫ 𝑘(𝑥 − 𝑡)𝐹(𝑢(𝑡))𝑑𝑡.

𝑥

0

 (2.1) 

We recall that the Laplace transforms of the derivatives of 𝑢(𝑥) are defined by 

 

ℒ{𝑢(𝑖)(𝑥)} = 𝑠𝑛ℒ{𝑢𝑛(𝑥)} − 𝑠𝑛−1𝑢(0) − 𝑠𝑛−2𝑢′(0) − ⋯ − 𝑢(𝑛−1)(0). (2.2) 

 

This gives, 

(I)    ℒ{𝑢′(𝑥)} = 𝑠ℒ{𝑢(𝑥)} − 𝑢(0) = 𝑠𝑈(𝑠) − 𝑢(0) 

(II)  ℒ{𝑢′′(𝑥)} = 𝑠2ℒ{𝑢(𝑥)} − 𝑠𝑢(0) − 𝑢′(0) = 𝑠2𝑈(𝑠) − 𝑠𝑢(0) − 𝑢′(0). 

(III) ℒ{𝑢′′′(𝑥)} = 𝑠3ℒ{𝑢(𝑥)} − 𝑠2𝑢(0) − 𝑠𝑢′(0) − 𝑢(0)

= 𝑠3𝑈(𝑠) − 𝑠2𝑢(0) − 𝑠𝑢′(0) − 𝑢(0) 

and so on for derivatives of higher order, where 𝑈(𝑠) = ℒ{𝑢(𝑥)} . Applying the 

Laplace transform to both sides of (2.1) gives 

𝑠𝑛ℒ{𝑢𝑛(𝑥)} − 𝑠𝑛−1𝑢(0) − 𝑠𝑛−2𝑢′(0) − ⋯ −𝑢𝑛−1(0) = 

ℒ{𝑓(𝑥)} + ℒ{𝑘(x − t) ⊗ F(u(t))} 
(2.3) 

The Laplace of convolution term  𝑘(𝑥 − 𝑡) ⊗ 𝐹(𝑢(𝑡)) can be written as product of 

terms so,  

𝑠𝑛ℒ{𝑢𝑛(𝑥)} − 𝑠𝑛−1𝑢(0) − 𝑠𝑛−2𝑢′(0) − ⋯ −𝑢𝑛−1(0) = 

ℒ{𝑓(𝑥)} + ℒ{𝑘(𝑥 − 𝑡)}ℒ{𝐹(𝑢(𝑡))} 
(2.4) 

 This can be reduced to 

ℒ{𝑢(𝑥)} =
1

𝑠
𝑢(0) +

1

𝑠2
𝑢′(0) + ⋯ +

1

𝑠𝑛
𝑢𝑛−1(0) +  

1

𝑠𝑛
ℒ{𝑓(𝑥)} (2.5) 
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+
1

𝑠𝑛
ℒ{𝑘(𝑥 − 𝑡)}ℒ{𝑓(𝑢))}. 

 

The Adomian decomposition method and the Adomian polynomials can be used to 

handle (2.5) and to address the non-linear term 𝐹(𝑢(𝑥)). We first represent the linear 

term  𝑢(𝑥) at the left side by an infinite series of components given by 

𝑢(𝑥) = ∑ 𝑢𝑛

∞

𝑛=0

(𝑥). (2.6) 

where the components   𝑢𝑛(𝑥),   𝑛 ≥ 0   will be recursively determined. However, 

the non-linear term 𝐹(𝑢(𝑥)) at the right side of (2.5) will be represented by an infinite 

series of the Adomian polynomials 𝐴𝑛  or Accelerated polynomials (El-Kalla 

polynomials) 𝐴̅𝑛. 

𝐹(𝑢(𝑥)) = ∑ 𝐴𝑛(𝑥)

∞

𝑛=0

, (2.7) 

i. Adomian Polynomials 𝑨𝒏 

 

𝐴𝑛 = (
1

𝑛!
) (

𝑑𝑛

𝑑𝜆𝑛
) [𝐹 (∑ 𝜆𝑖𝑢𝑖

∞

𝑛=0

)]

𝜆=0

, 𝑛 = 0,1,2, … (2.8) 

If, 𝐹(𝑢(𝑥)) = 𝑢2(𝑥), the Adomian polynomials are: 

𝐴0 = 𝑢0
2, 

𝐴1 = 2𝑢0𝑢1, 

𝐴2 = 2𝑢0𝑢2 + 𝑢1
2, 

𝐴3 = 2𝑢0𝑢3 + 2𝑢1𝑢2, 

And 𝐹(𝑢(𝑥)) = 𝑢3(𝑥), the Adomian polynomials are: 

𝐴0 = 𝑢0
3, 

𝐴1 = 3𝑢0
2𝑢1, 

𝐴2 = 3𝑢0
2𝑢2 + 3𝑢0𝑢1

2, 
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𝐴3 = 6𝑢0𝑢1𝑢2 + 𝑢1
3 + 3𝑢0

2𝑢3. 

ii. Accelerated Polynomials 𝑨̅𝒏 formula 

A̅𝑛 = 𝐹(𝑠𝑛) − ∑ A̅𝑛

𝑛−1

i=0

,   𝑛 = 0,1,2, … (2.9) 

Where 𝐴̅𝑛 , are El-Kalla polynomial, 𝐴̅0, 𝐴̅1, 𝐴̅2, …  and 𝐹(𝑠𝑛)  is making a 

substitution of the summation of the solutions in the term of the non-linearity 𝑛-times. 

For instance, if the non-linear function is  𝐹(𝑢(𝑥)) = 𝑢2(𝑥) , the Accelerated 

polynomials 𝐴̅𝑛 are: 

𝐴̅0 = 𝑢0
2, 

𝐴̅1 = 2𝑢0𝑢1 + 𝑢1
2, 

𝐴̅2 = 2𝑢0𝑢2 + 2𝑢1𝑢2 + 𝑢2
2, 

𝐴̅3 = 2𝑢0𝑢3 + 2𝑢1𝑢3 + 2𝑢2𝑢3 + 𝑢3
2, 

and 𝐹(𝑢(𝑥)) = 𝑢3(𝑥), the Accelerated polynomials 𝐴̅𝑛: 

𝐴̅0 = 𝑢0
3, 

𝐴̅1 = 3𝑢0
2𝑢1 + 3𝑢0𝑢1

2 + 𝑢1
3, 

𝐴̅2 = 3𝑢0
2𝑢2 + 6𝑢0𝑢1𝑢2 + 3𝑢1

2𝑢2 + 3𝑢0𝑢2
2 + 3𝑢1𝑢2

2 + 𝑢2
3, 

𝐴̅3 = 3𝑢0
2𝑢3 + 6𝑢0𝑢1𝑢3 + 3𝑢1

2𝑢3 + 6𝑢0𝑢2𝑢3 + 6𝑢1𝑢2𝑢3 + 3𝑢2
2𝑢3 + 3𝑢0𝑢3

2

+ 3𝑢1𝑢3
2 + 3𝑢2𝑢3

2 + 𝑢3
2. 

Where   𝐴𝑛, 𝑛 ≥ 0    can be obtained for all forms of non-linearity. Substituting (2.6) 

and (2.7) into (2.5) leads to 

ℒ {∑ 𝑢𝑛(𝑥)

∞

𝑛=0

}

=
1

𝑠
𝑢(0) +

1

𝑠2
𝑢′(0) + ⋯ +

1

𝑠𝑛
𝑢𝑛−1(0) +

1

𝑠𝑛
ℒ{𝑓(𝑥)}

+
1

𝑠𝑛
ℒ{𝑘(𝑥 − 𝑡)} ℒ {∑ 𝐴𝑛(𝑥)

∞

𝑛=0

} 

 

(2.10) 

where, 
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ℒ{𝑢0(𝑥)} =
1

𝑠
𝑢(0) +

1

𝑠2
𝑢′(0) + ⋯ +

1

𝑠𝑛
𝑢𝑛−1(0) +

1

𝑠𝑛
ℒ{𝑓(𝑥)} (2.11) 

ℒ{𝑢𝑛+1(𝑥)} =
1

𝑠𝑛
ℒ{𝑘(𝑥 − 𝑡)}ℒ {∑ 𝐴𝑛(𝑥)

∞

𝑛=0

} , 𝑛 ≥ 0.  (2.12) 

3 Numerical Results 

     In this section, three examples of non-linear integro-differential equations are 

presented to confirm the accuracy of the proposed method. The analytic solution for 

each problem is calculated. The comparison between the results of Laplace Adomian 

modifications and our proposed method will be introduced in this section. 

Example 3.1   Consider the following non-linear Volterra integro-differential equation 

of the second [12] [16] [4] 

 

𝑢′(𝑥) = −1 + ∫ 𝑢2(𝑡)𝑑𝑡

𝑥

0

,   𝑢(0) = 0.  (3.1) 

Applying the Laplace transform on (3.1) and by using the initial condition, we have: 

𝑠𝑈(𝑠) = −
1

𝑠
+ ℒ {∫ 𝑢2(𝑡)𝑑𝑡

𝑥

0

} , or 

𝑈(𝑠) = −
1

𝑠2
+

1

𝑠
ℒ {∫ 𝑢2(𝑡)𝑑𝑡

𝑥

0

} = −
1

𝑠2
+

1

𝑠2
ℒ{𝑢2(𝑡)}. 

Applying the inverse Laplace transform, we get 

𝑢(𝑥) = −𝑥 + ℒ−1 {
1

𝑠
ℒ (∫ 𝑢2(𝑡)𝑑𝑡

𝑥

0

)}. 

We decompose the solution can be expressed as an infinite series (2.6) and by using 

the recursive relation (2.12), the solution is: 

i. Using Traditional Polynomials 𝑨𝒏 

𝑢0(𝑥) = −𝑥, 



Emad Abdallah Sayed/Engineering Research Journal 175 (September 2022) PH27 – PH41 

 

PH33 

 

      𝑢1(𝑥) =
𝑥4

12
, 

       𝑢2(𝑥) = −
𝑥7

252
, 

         ⋮ 

𝑢(𝑥) = −𝑥 +
𝑥4

12
−

𝑥7

252
+ ⋯. 

ii. Using Accelerated Polynomials 𝑨̅𝒏 

𝑢0(𝑥) = −𝑥, 

𝑢1(𝑥) =
𝑥4

12
, 

𝑢2(𝑥) = −
𝑥7

252
+

𝑥10

12960
, 

𝑢(𝑥) = −𝑥 +
𝑥4

12
−

𝑥7

252
+

𝑥10

12960
+ ⋯. 

Table 3.1 illustrates the comparison between solutions of Wavelet-Galerkin method 

(WGM), variation iteration method (VIM), Adomian decomposition method (ADM), 

and Laplace Adomian decomposition method with traditional polynomial (LADM) 

and accelerated polynomial (ALADM).  

Table 3.1: shows a comparison between WGM, VIM, ADM, LADM and ALADM of 

Example 3.1 

𝒙 WGM [16] VIM  [12] ADM [16] LADM [12] 
Accelerated. 

LADM 

0.0000 0 0 0 0 0 

0.0938 -0.0937 -0.9379355 -0.0937935 -0.09379 -0.09379 

0.2188 -0.2186 -0.5186091 -0.2186090 -0.21861 -0.21861 

0.3125 -0.3117 -0.317065 -0.3117060 -0.31171 -0.31171 

0.4062 -0.4040 -0.4039385 -0.4039390 -0.40394 -0.40394 

0.5000 -0.4948 -0.4948225 -0.4948230 -0.49482 -0.49482 

0.6250 -0.6124 -0.6124306 -0.6124310 -0.61243 -0.61243 

0.7188 -0.6969 -0.6969414 -0.669410 -0.69694 -0.69694 

0.8125 -0.7771 -0.7770901 -0.7770900 -0.77709 -0.77709 

0.9062 -0.8520 -0.8519340 -0.8519340 -0.85193 -0.85193 

1.0000 -0.9205 -0.904747 -0.9204760 -0.92047 -0.92047 
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Example 3.2   Consider the following non-linear Volterra integro-differential 

equation of the second kind [17] 

𝑢′(𝑥) =
9

4
−

5

2
𝑥 −

1

2
𝑥2 − 3𝑒−𝑥 −

1

4
 𝑒−2𝑥 + ∫(𝑥 − 𝑡)

𝑥

0

𝑢2(𝑡)𝑑𝑡, 𝑢(0) = 2,  (3.2) 

and the exact solution is 𝑢(𝑥) = 1 + 𝑒−𝑥. 

Taking Laplace transform of both sides of equation (3.2) gives: 

ℒ{𝑢′(𝑥)} = ℒ {
9

4
−

5

2
𝑥 −

1

2
𝑥2 − 3𝑒−𝑥 −

1

4
𝑒−2𝑥} + ℒ{(𝑥 − 𝑡) ⊗ 𝑢2(𝑥)}, 

so that, 

𝑠𝑈(𝑠) − 𝑢(0) =
9

4𝑠
−

5

2𝑠2
−

1

𝑠3
−

3

𝑠 + 1
−

1

4(𝑠 + 2)
+

1

𝑠2
ℒ{𝑢2(𝑥)}, 

or equivalently, 

𝑈(𝑠) =
2

𝑠
+

9

4𝑠2
−

5

2𝑠3
−

1

𝑠4
−

3

𝑠(𝑠 + 1)
−

1

4𝑠(𝑠 + 2)
+

1

𝑠3
ℒ{𝑢2(𝑥)}. 

Substituting the series assumption for 𝑈(𝑠) and the Adomian polynomials for 𝑢2(𝑥) 

as given above in (2.6) and equations (2.8) and (2.9) respectively, and using the 

recursive relation (2.12), we obtain 

𝑈0(𝑠) =
2

𝑠
+

9

4𝑠2
−

5

2𝑠3
−

1

𝑠4
−

3

𝑠(𝑠 + 1)
−

1

4𝑠(𝑠 + 2)
 

ℒ{𝑢𝑘+1(𝑥)} =
1

𝑠3
ℒ{𝐴𝑘(𝑥)},   𝑘 ≥ 0. 

where, 𝐴𝑘 are the Adomian polynomials for  𝑢2(𝑡), take Laplace inverse ℒ−1 

i. Using Traditional Polynomials 𝑨𝒏 

𝑢0(𝑥) = −
9

8
+

𝑒−𝑥

8
+ 3𝑒−𝑥 +

9𝑥

4
−

5𝑥2

4
−

𝑥3

6
 

And Taylor expansion is: 

𝑢0(𝑥) = 2 − 𝑥 +
𝑥2

2
−

5𝑥3

6
+

5𝑥4

24
−

7𝑥5

120
+ ⋯ , and so on, 
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𝑢(𝑥) = ∑ 𝑢𝑛

∞

𝑛=0

= 𝑢0 + 𝑢1 + 𝑢2 + ⋯ 

𝑢(𝑥) = 2 − 𝑥 +
𝑥2

2
−

𝑥3

6
+

𝑥4

24
−

𝑥5

120
−

𝑥6

72
+

𝑥7

280
−

17𝑥8

20160
−

181𝑥9

181440
+

409𝑥10

907200
 

−
137𝑥11

798336
+

43𝑥12

534600
−

3241𝑥13

111196800
+

103507𝑥14

10897286400
−

917219𝑥15

326918592000
 

+
214783𝑥16

290594304000
−

54101𝑥17

302455296000
+

350431𝑥18

10888390656000
−

2723𝑥19

574665062400

+
49𝑥20

112679424000
−

49𝑥21

1690191360000
+ ⋯ 

That converges to the exact solution 

𝑢(𝑥) = 1 + 𝑒−𝑥 

ii. Using Accelerated Polynomials 𝑨̅𝒏 

𝑢0(𝑥) = 2 − 𝑥 +
𝑥2

2
−

5𝑥3

6
+

5𝑥4

24
−

7𝑥5

120
+ ⋯ , and so on 

Then, the solution is  

𝑢(𝑥) = 2 − 𝑥 +
𝑥2

2
−

𝑥3

6
+

𝑥4

24
−

𝑥5

120
−

𝑥6

72
+

𝑥7

280
−

17𝑥8

20160
−

𝑥9

8640
                      

            +
43𝑥10

302400
−

169𝑥11

2217600
+

67𝑥12

2138400
−

743𝑥13

70761600
+

34339𝑥14

10897286400
 

     −
105067𝑥15

326918592000
−

1423𝑥16

14529715200
+

1852237𝑥17

22230464256000
                             

     −
6905749𝑥18

145508493312000
+

1358767𝑥19

72754246656000
−

55443137𝑥20

8944492677120000
 

   +
331457317𝑥21

187834346219520000
−

97781𝑥22

217275125760000
+

37204393𝑥23

357308944312320000
 

   −
20177𝑥24

972269236224000
+

344819𝑥25

97226923622400000
−

262969𝑥26

549543481344000000
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  +
8477𝑥27

164863044403200000
−

49𝑥28

13189043552256000
 

  +
343𝑥29

1912411315077120000
+ ⋯ 

Table 3.2 shows absolute error between (LADM) solution and ALADM solution and 

exact solution. Figure 3.1 shows the exact solution, LADM, and ALADM and Figure 

3.2 shows the absolute error of LADM, and ALADM. 

Table 3.2: shows a comparison between LADM and ALADM of Example 3.2    

𝒙 𝒖𝐄𝐱(𝒙) 𝒖𝐋𝐀𝐃𝐌(𝒙) 𝒖𝐀𝐋𝐃𝐌(𝒙) |𝒖𝐄𝐱 − 𝒖𝐋𝐀𝐃𝐌| |𝒖𝐄𝐱 − 𝒖𝐀𝐋𝐃𝐌| 
0.0 2 2 2 0 0 

0.1 1.904837 1.904837 1.904837 1.49E-08 1.49E-08 

0.2 1.818731 1.81873 1.81873 9.32E-07 9.32E-07 

0.3 1.740818 1.740808 1.740808 1.04E-05 1.04E-05 

0.4 1.67032 1.670263 1.670263 5.72E-05 5.7E-05 

0.5 1.606531 1.606316 1.606318 0.000214 0.000213 

0.6 1.548812 1.548182 1.548189 0.00063 0.000622 

0.7 1.496585 1.495018 1.495047 0.001567 0.001539 

0.8 1.449329 1.445873 1.445964 0.003456 0.003365 

0.9 1.40657 1.399615 1.399868 0.006955 0.006701 

1.0 1.367879 1.354846 1.35548 0.013033 0.0124 
 

 

Figure 3.1: shows the comparison between exact and Adomian, and Accelerated 

solutions of Example 3.3  
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Figure 3.2: shows the absolute error of LADM and ALADM of Example 3.3 . 

 

Example 3.3 Consider the non-linear integro-differential equation of the second kind 

[2] 

𝑢′(𝑥) =
3

2
𝑒𝑥 −

1

2
𝑒3𝑥 + ∫ 𝑒𝑥−𝑡

𝑥

0

𝑢3(𝑡)𝑑𝑡,   𝑢(0) = 1. (3.3) 

 

Notice that the kernel 𝑘(𝑥 − 𝑡) = 𝑒𝑥−𝑡. Taking Laplace transform of both sides of 

above equation (3.3). 

ℒ(𝑢′(𝑥)) = ℒ (
3

2
𝑒𝑥 −

1

2
𝑒3𝑥) + ℒ(𝑒𝑥−𝑡 + 𝑢3(𝑥)) , 

so that, 

𝑠𝑈(𝑠) − 𝑢(0) =
3

2(𝑠 − 1)
−

1

2(𝑠 − 3)
+

1

𝑠 − 1
ℒ(𝑢3(𝑥)),  

or equivalently 

𝑈(𝑠) =
1

𝑠
+

3

2𝑠(𝑠 − 1)
−

1

2𝑠(𝑠 − 3)
+

1

𝑠(𝑠 − 1)
ℒ(𝑢3(𝑥)) , 
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where 𝑈(𝑠) = ℒ{𝑢(𝑥)}.  Substituting the series assumption for 𝑈(𝑠)  and the 

Adomian and El-Kalla polynomials for 𝑢3(𝑥)  as given above in (2.8) and (2.9) 

respectively, and using the recursive relation (2.12), we obtain: 

𝑈0(𝑠) =
1

𝑠
+

3

2𝑠(𝑠 − 1)
−

1

2𝑠(𝑠 − 3)
, 

ℒ{𝑢𝑘+1(𝑥)} =
1

𝑠(𝑠 − 1)
ℒ{𝐴𝑘(𝑥)},   𝑘 ≥ 0, 

taking the inverse Laplace inverse ℒ−1for 𝑈0(𝑠) and using the recurrence relations 

gives: 

i. Using Traditional Polynomials 

𝑢0(𝑥) = 1 + 𝑥 −
𝑥3

2
−

𝑥4

2
−

13𝑥5

40
−

𝑥6

6
+ ⋯ 

𝑢1(𝑥) =
𝑥2

2
+

2𝑥3

3
+

5𝑥4

12
+

7𝑥5

120
−

101𝑥6

720
+ ⋯ 

𝑢2(𝑥) =
𝑥4

8
+

11𝑥5

40
+

13𝑥6

48
+ ⋯ 

⋮ 

𝑢(𝑥) = 1 + 𝑥 +
𝑥2

2
+

𝑥3

6
+

𝑥4

24
+

𝑥5

120
+ ⋯. 

We can rewrite as: 

𝑢(𝑥) = 1 + 𝑥 +
1

2!
𝑥2 +

1

3!
𝑥3 +

1

4!
𝑥4 + ⋯. 

That converges to the exact solution 

𝑢(𝑥) = 𝑒𝑥 

ii. Using Accelerated Polynomials 

𝑢0(𝑥) = 1 + 𝑥 −
𝑥3

2
−

𝑥4

2
−

13𝑥5

40
−

𝑥6

6
+ ⋯ 

𝑢1(𝑥) =
𝑥2

2
+

2𝑥3

3
+

5𝑥4

12
+

7𝑥5

120
−

101𝑥6

720
+ ⋯ 
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𝑢2(𝑥) =
𝑥4

8
+

11𝑥5

40
+

71𝑥6

240
+ ⋯ 

⋮ 

𝑢(𝑥) = 1 + 𝑥 +
𝑥2

2
+

𝑥3

6
+

𝑥4

24
+

𝑥5

120
−

𝑥6

90
+ ⋯. 

We can rewrite as: 

𝑢(𝑥) = 1 + 𝑥 +
1

2!
𝑥2 +

1

3!
𝑥3 +

1

4!
𝑥4 + ⋯. 

That converges to the exact solution 

𝑢(𝑥) = 𝑒𝑥 . 

Table 3.3: shows a comparison between LADM and ALDM solution of Example 3.3 . 

Figure 3.3 shows the exact solution, LADM, and ALADM and Figure 3.4 shows the 

absolute error of LADM, and ALADM.  

Table 3.3: shows a comparison between LADM and ALDM solution of Example 3.3    

𝒙 𝒖𝐄𝐱(𝒙) 𝒖𝐋𝐀𝐃𝐌(𝒙) 𝒖𝐀𝐋𝐃𝐌(𝒙) |𝒖𝐄𝐱 − 𝒖𝐋𝐀𝐃𝐌| |𝒖𝐄𝐱 − 𝒖𝐀𝐋𝐃𝐌| 
0.0 1 1 1 0 0 

0.1 1.105171 1.105171 1.105171 3.75E-08 1.25E-08 

0.2 1.221403 1.2214 1.221402 2.4E-06 8.03E-07 

0.3 1.349859 1.349831 1.34985 2.74E-05 9.16E-06 

0.4 1.491825 1.491671 1.491773 0.000154 5.15E-05 

0.5 1.648721 1.648134 1.648524 0.000588 0.000197 

0.6 1.822119 1.820363 1.82153 0.001756 0.000589 

0.7 2.013753 2.009323 2.012264 0.00443 0.001489 

0.8 2.225541 2.215664 2.222218 0.009877 0.003323 

0.9 2.459603 2.439567 2.452853 0.020036 0.00675 

1.0 2.718282 2.680556 2.705556 0.037726 0.012726 
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Figure 3.3: shows the comparison between exact and Adomian, and Accelerated 

solutions of Example 3.3  

 

Figure 3.4: shows the absolute error of LADM and ALADM of Example 3.3 . 

 

4 Conclusion  

In this paper, we approximate a semi analytic solution of the non-linear Volterra 

integro-differential equation by using Laplace Adomian decomposition method and 

using two approaches of non-linear terms. We demonstrated that the solution of El-

Kalla polynomials 𝐴̅𝑛  is quite efficient and accelerated convergent than Adomian 

polynomials 𝐴𝑛. 
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