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Abstract 

Several time-frequency analysis methods have been applied to the detection and diagnosis of 

rolling-element bearing faults. One such method is the empirical wavelet transform (EWT), 

which is used for signal analysis. This study combines the EWT method with the correlation 

coefficient to diagnose bearing faults using experimentally measured vibration signals. First, the 

empirical wavelet transform method is used to analyze the vibration signal and extract the 

amplitude modulated-frequency modulated (AM-FM) modes. Subsequently, the correlation 

coefficient is computed to identify significant components that indicate bearing faults. Finally, 

the envelope spectrum is generated for these significant components in order to extract the 

characteristic frequencies associated with bearing faults. The findings demonstrate the 

effectiveness of this novel approach in accurately identifying bearing fault characteristics. 

Keywords:  Rolling-element bearings; Fault diagnosis; Empirical wavelet transform; Correlation 

coefficient; Signal processing.  

Introduction  

Rolling-element bearings are crucial and commonly used machine components in rotating 

equipment [1]. Bearing damage can result from problems in the manufacturing process or errors 

during assembly, but it can also happen when the bearing is subjected to difficult working 

circumstances. The performance of the equipment is directly impacted by bearing defects, which 

can also result in production losses, shorter equipment lifespans, or even catastrophic failures [2-

5]. As a result, early detection of these defects without machine disassembly is critical for 
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condition monitoring, quality inspection, and predictive maintenance. Several reviews have 

surveyed the development of approaches for early detection and diagnosis of bearing problems 

throughout the last decades [6-9]. 

Empirical wavelet transform (EWT) is a novel technique that was created by Gilles [10]. The 

vibration signal produced by defective bearings can be described as a complex modulation 

signal, in which the impulsive frequency of the faulty bearings varies due to the modulation of 

the bearing resonance frequency and/or the rotational frequency of the shaft. Therefore, the use 

of EWT for bearing defect detection is appropriate. Liu and Chen [11] provided a broad 

summary of the developments in the study of the EWT method and its applications in machine 

fault diagnosis. 

Kedadouche et al. [12] used a numerically generated signal to assess EWT, empirical mode 

decomposition (EMD), and ensemble empirical mode decomposition (EEMD). The results 

showed that the EWT is better than the EEMD and EMD in mode estimates, and computation 

time is significantly reduced. El-Mongy [13] combined the parameter-less empirical wavelet 

transform (PEWT) with envelope detection (ED). The results suggested that the novel method 

extracted the bearing fault features successfully. Lopez et al. [14] suggested an empirical wavelet 

transform (EWT)-based methodology for detecting bearing faults. The experimental results 

revealed that the proposed technique efficient in diagnosing induction motor-bearing defects. To 

extract the bearing fault characteristics, Hu et al. [15] proposed an enhanced empirical wavelet 

transform (EEWT) technique for bearing detection. Both theoretical and practical findings 

showed that the suggested technique is noise resistant and accurate for detecting bearing faults. 

The results showed that the proposed technique has high prediction accuracy.  Xin et al. [16] 

suggested a novel fault diagnostic method based on reinforced empirical Morlet wavelet 

transform (REMWT) for overcoming the drawbacks of classic EWT in rotating machinery fault 

diagnosis. Xue et al. [17] suggested an approach that combines enhanced empirical wavelet 

transform (EEWT) with correlation kurtosis (CK). The findings revealed that the suggested 

approach was better than that of the classic EWT. Xu et al. [18] developed a frequency band 

multidivisional and overlapped based on EWT  technique to accurately determine the highest 

component of kurtosis. They found that the suggested method has good accuracy and 

effectiveness. Huang et al. [19] introduced a new technique based on frequency phase space 
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empirical wavelet transform (FPSEWT). The results showed that the suggested approach can 

successfully extract rolling element bearing defect characteristics.  

 

This paper provides a rolling bearing defect diagnostic method based on the use of EWT for 

defective bearings experimental signals for the purpose of fault feature extraction. Some 

improvements will also be made to the EWT technique in order to overcome its limitations. 

Fundamental Theory of the Empirical Wavelet Transform 

Gilles [10] gave the theoretical details about the empirical wavelet transform. EWT is a new 

approach to building adaptive wavelets. Assume that the Fourier spectrum of a real valued signal 

 ( ) falls within the range [ , ]. Finding the local maxima in the spectrum and sorting them in 

decreasing order is the first stage in segmenting a spectrum confined from 0 to   into N 

contiguous segments. Then, the boundaries of all segments are denoted by    (where   =0 and 

  =   . Thus, the midway between any two successive maxima is the definition of a segment. 

The symbol for each section is   = [    ,   ]. Hence, it can be seen that     
     = [ , ]. A 

transient phase of width    is defined for each    , where    is assumed to be proportional to 

   (Where ϒ =     ) and       .   Is the proportion between the cutoff frequency and the 

transition bandwidth, and it may be selected in accordance with the following requirement: 
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The band-pass filters on each segment are how the empirical wavelets are defined. It is decided 

to use the Meyer wavelet as the foundation wavelet function. In Equations (2) and (3), the 

empirical scaling function and the empirical wavelets are respectively shown. 
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Where the  ( ) is an arbitrary function in    ([0, 1]) such that. 

   (4) 
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Numerous polynomial functions meet these requirements. The classic example of this function is 

represented by the following polynomial, which was initially proposed by Daubechies [20] and 

utilized by Gilles [10] as well as in this study, the standard example of this function is 

 (5)  ( )    (                ) 

The empirical wavelet transform can be defined in the same way as the traditional wavelet 

transform. The inner product of the signal f (t) with the scaling function    yields the 

approximation coefficients   
 (   ). 

(6) 
  

 (   )  〈     〉  ∫ ( )   (   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅        ( ̂( )    ̂ ( )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

The detail coefficients   
 (   )  are the inner products of the signal and the empirical 

wavelets   : 

(7) 
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The IFFT symbolizes the inverse Fourier transform, while  ( ) denotes the Fourier transform of 

 ( ). 

Consequently, the reconstructed signal may be calculated as follows: 
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Where the convolution is represented by ( ) the signal empirical modes may thus be expressed as 

follows: 
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Gilles [21] suggested a segmentation technique based on scale space representation. A flowchart 

that depicts the suggested algorithm's whole process is shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Flow chart of process of fault detection using empirical wavelet transforms. 

 

Input vibration Signal 

Fourier spectrum of the signal using FFT 

Fourier spectrum segmentation using the scale space EWT 

detection method 
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Empirical wavelet transform 

Empirical Modes 

Calculating correlation coefficient for all the components and sorting the values to 

find the correlation coefficient modes 

Building the reconstructed signal using meaningful modes only 

Envelope spectrum of meaningful reconstructed signals 

End 
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Experimental setup  

The fault demonstrator shown in Fig. 2, created by G.U.N.T., is utilized for conducting 

experiments on faulty bearings at shaft speed of 1500 rpm.  The machinery fault demonstrator 

comprises a steel shaft equipped with a single disk positioned at its midpoint, secured by a taper 

lock mechanism. The shaft is supported by two deep groove ball bearings (SKF 6004) and is 

connected to an electric motor with a power output of 0.37 kW, through a jaw coupling.  A total 

of 20,000 signal samples were collected at a sampling rate of 4000 Hz, Using accelerometers to 

measure both horizontal and vertical vibration signals. 

 

Fig.2: Machinery fault demonstrator made by G.U.N.T. [22] 

 

Results and discussion 

In this section, the experimental results are presented to assess the effectiveness of EWT in 

feature extraction of the bearing faults, namely, outer race defect.  

EWT results of outer race defect for experimental signal 

Fig. 3 (a) illustrates the measured time waveform on the bearing with outer race defect at the 

shaft rotational speed of 1500 rpm in horizontal direction. Fig. 3 (b) shows the segmentation of 

the Fourier spectrum of experimental vibration signal, using EWT scale space detection method. 
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The scale space automatically finds the meaningful modes in a spectrum. The EWT method's 

Fourier bounds are shown as dashed vertical lines. 

 
(a)                                                                          (b) 

Fig.3. Experimental vibration signal (outer race fault), (a) Time record, (b) segmented frequency 

spectrum using scale space EWT. 

Fig. 4 shows the decomposition using the scale space EWT of experimental vibration signal. It 

can be seen in Fig. 4 that the EWT decomposed the experimental vibration signal into signals 

with different frequencies, which can be considered as different modes since they have different 

frequencies and energies. It is evident that EWT can efficiently decompose the signal and 

precisely separate components of various frequencies. 

  

Fig.4. Experimental vibration signal decomposition using the scale space EWT (Continued) 
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Fig.4. Experimental vibration signal decomposition using the scale space EWT (Continued) 
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Fig.4. Experimental vibration signal decomposition using the scale space EWT 

Fig. 5 showed the kurtosis value and correlation coefficient for all the EWT components. The 

obtained values are sorted in  a descending order to identify the set of EWT modes with elevated 

kurtosis and correlation coefficient. The kurtosis and correlation coefficient values for EWT 

components having values that exceed a specific level are retained, while the others are removed. 

For the measured signal, the red dashed lines reflect this. The components F37, F40, and F44 are 

having high correlation coefficient, while the components F9, F11, and F64 are having high 

kurtosis value.  Fig. 6 shows the meaningful modes and the reconstructed signal using the F37, 

F40, and F44 modes only. While Fig. 7 shows the meaningful modes and the reconstructed 

signal using the F9, F11, and F64 modes only. 
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(a) (b) 

Fig.5. Kurtosis values and correlation coefficient for EWT components of measured signal, (a) 

Kurtosis values, and (b) correlation coefficient 

  

(a) (b) 

Fig.6. Experimental vibration bearing fault signal, (a) Meaningful components having high 

correlation coefficient value, (b) Meaningful reconstructed signal 

  

(a) (b) 

Fig.7. Experimental vibration bearing fault signal, (a) Components having high kurtosis value, 

(b) Reconstructed signal 
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The envelope spectra of EWT components having elevated correlation coefficient are plotted in 

Fig.8 (a). The envelope spectrum shows the peaks at BPFO and a number of its harmonics. 

Therefore, the meaningful components having high correlation coefficient values can be selected 

as a suitable diagnostic feature in the analysis of the outer race defect. While the envelope 

spectra of EWT components have elevated kurtosis is plotted in Fig.8 (b). Fig.8 (b) shows  a 

peak at BPFO only, so it can be inferred that  the components having high kurtosis value were 

not enough to construct a  meaningful signal that comprises all the features of the outer race 

fault.  

  

(a) (b) 

Fig.8. Envelope spectrum of the meaningful reconstructed signal component, (a) EWT 

components having elevated correlation coefficient, and (b) EWT components have elevated 

kurtosis. 

 

Conclusions 

This study explored the application of the Empirical Wavelet Transform (EWT) technique for 

bearing fault diagnosis. Experimental signals from a fault demonstrator provided by G.U.N.T. 

were utilized to evaluate the effectiveness of the EWT method. By employing the EWT-

correlation coefficient procedure, a meaningful reconstructed signal was obtained. Afterwards, 

the envelope spectrum was used to show the bearing fault features. It was concluded that the 

correlation coefficient was more efficient in extracting the meaningful EWT modes that are 

relevant to the bearing fault in comparison with the kurtosis parameter. Overall, these findings 

confirmed the efficacy of the EWT approach for successful bearing fault diagnosis. 
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