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Abstract 

 

Unsteady Hartman flow and heat transfer of two immiscible fluids between two infinite porous paral-

lel plates are studied in this work. Uniform magnetic field is applied on the fluids perpendicular to the 

plates and Hall Effect under constant pressure gradient are considered. The equations solution is ac-

quired by applying the finite difference technique in both fluid regions. Effects of physical parameters 

such as viscosity ratio, conductivity ratio, Hartman number, Prandtl number and Eckert number are 

presented graphically on both the velocity and temperature profile. It was found that, Hall parameter is 

direct proportional to main component of the velocity and temperature profiles. With the increase of 

the viscosity ratio, the temperature and velocity profiles decrease. In both regions, the temperature 

distribution increases with a rise in the Prandtl and Eckert numbers at any given point, whereas it 

drops with an increase in the thermal conductivity ratio.  This research holds significant importance as 

it focuses on the extensive utilization of The Hartmann fluid flows in cooling electronic components 

that produce substantial heat during their operation. 

 

Keywords: Hartman flow, Unsteady flow, Immiscible fluids, MHD, Finite-difference solution. 

1. Introduction 

The study of a multiphase flow or immiscible fluids arises in many engineering applications and tech-

nologies include solar energy collectors, heat exchangers, and magnetohydrodynamics (MHD) power 

generation [1]. Velocity and volumetric flow rates distributions for the co-current laminar flow of two 

immiscible liquids in rectangular conduits were presented by Charles and Lilleleht [2]. Renardy and 

Joseph [3] studied the brand problem with two immiscible fluids in layers between two infinite paral-

lel plate. Kuznetsov [4] investigated couette flow of two immiscible fluids in channel with porous 
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medium. Steady flow of two viscous, incompressible, and immiscible fluids in an infinitely parallel-

plate channel filled with a uniform porous medium was represented by Chamkha [5]. Ngoma and 

Erchiqui [6] reported the flow of two non-conducting immiscible fluids in a microchannel between 

two parallel plates in which the effect of viscous shear stress, and the pressure gradient were consid-

ered. The two immiscible fluids flow in inclined channel with entropy generation under the influence 

of a uniform magnetic field was discussed by Nezhad and Shahri [7]. Abbas et al. [8] studied the 

couette flow of two incompressible, viscous, immiscible, with electrically conducting dusty fluids 

passing through two infinite parallel plates. The unsteady of two immiscible Maxwell fluid flows 

through two moving parallel plates are listed by Hisham et al [9]. Winfred et al [10] investigated the 

flow and heat transfer of two pure and dusty viscous immiscible fluids flows between parallel and 

vertical wall. The effect of buoyancy and viscous heating for two immiscible fluids flows in isother-

mal duct was discussed by Umavathia and Anwar [11]. Padma and Srinivas [12] studied the two im-

miscible incompressible viscous fluid flows with MHD through a channel with a porous medium. 

The MHD flow  between parallel plates of  two immiscible nanofluids was caried out by Zeeshan et al 

[13]. Kumar et al [14] examined the magnetofluidic actuation-induced interfacial movement of im-

miscible fluid layers in an inclined fluidic conduit. The hydromagnetic flow of two immiscible pair 

stress fluids through a homogeneous porous media in a cylindrical conduit with slip effect was car-

ryout by Punnamchandar et al [15]. Anandika et al [16] reported the two-layer model of the hybrid 

nanofluid of MHD flow between two discs with identical radii. 

 

MHD) flow is of interest of many researchers for its importance in many engineering applications such as 

MHD generator, cooling of nuclear reactors, MHD pump, plasma physics, and petroleum industries [17]. 

Malashetty and Leela [18] studied analytically the immiscible MHD flow within  a channel horizontally. Na-

vier-Stock equations for MHD flow are solved exactly by Andersson [19]. Cortell [20] investigated numerically 

the flow of an electrically conducting  power-law fluid with a uniform magnetic field.  Mekheimer et al. [21] 

studied the influence of heat transfer of MHD flow in a vertical annulus for Newtonian fluid on the peristaltic 

flow with a zero Reynolds number. The effects of heat transfer on a peristaltic flow of a MHD Newtonian fluid 

in a porous horizontal tube were studied by Nadeem et al. [22-23]. The effects of heat transfer and MHD with 

peristaltic flow of  incompressible Newtonian fluid with a porous medium in a vertical tube are investigated by 

Vasudev et al. [24]. Abdeen et al [25] and Joseph et al [26] studied the heat transfer of Couette fluid flow pass-

ing between two parallel porous plates, under effect of Hall current. The two immiscible fluids flow along a 

horizontal channel having two porous media with an oscillating lateral wall mass flux during transient Hart-

mann magnetohydrodynamic flow was investigated by Bég et al [27]. Chandrawat and Josi [28] studied 

the MHD unsteady Couette flow of two immiscible fluids flow on horizontal channel with heat transfer. Abbas 

et al [29] focused on the effects of thermal radiations and chemical reactions on MHD nanofluid flow with 

mass and heat transfer around a vertical cone in porous media is conducted. Through a curved corrugated chan-

nel, two layered immiscible time-dependent flow in the presence of a magnetic field has been statistically ana-

lyzed by Goyal and Srinivas [30]. Enamul and Surender [31] studied the hybrid nanofluid flow bounded by 

double-revolving disks. 

 

The flow along the annular channel between two non-conducting cylinders with high Hartmann number was 

studied by Todd [32]. Hartmann flow of a transverse magnetic field with an interface at the surface of the per-

meable bed was investigated by Rudraiah et al. [33]. Nagy and  Demendy [34] investigated the effect of Hall 

currents and rotation on a generalized Hartmann flow and heat transfer. Attia and Lotfy [35] studied the impact 

of heat transport and temperature on the transient Hartmann flow. Attia [36] investigated the Hartmann flow 

and thermal transfer of an electrically transmitted incompressible non-Newtonian fluid between two paral-

https://www.sciencedirect.com/topics/physics-and-astronomy/magnetohydrodynamic-flow
https://www.sciencedirect.com/topics/physics-and-astronomy/nanofluid
http://www.sciencedirect.com/science/article/pii/S0096300304006241
http://www.sciencedirect.com/science/article/pii/S0096300304006241
http://link.springer.com/search?facet-author=%22Prof.+H.+I.+Andersson%22
http://www.sciencedirect.com/science/article/pii/S0375960107014545
http://link.springer.com/search?facet-author=%22T.+Nagy%22
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lel plates. Umavathi et al. [37] discussed an unsteady Hartmann flow of two immiscible fluids passing through 

a horizontal channel with oscillatory time-dependent wall transpiration velocity. The MHD non-Darcy flow 

of Hartmann fluid with heat transfer passing through two infinite parallel insulating porous plates was investi-

gated by Attia et al [38]. The impact of a magnetic field oblique to the channel walls on MHD friction factors 

for a range of aspect ratios and channel wall conductivities at varying Hartmann values by Kamble et al [39]. 

Megahed et al [40] investigated the unstable stretched sheet with extended heat flux that causes the boundary 

layer laminar flow and heat transfer for MHD fluid. The Unsteady MHD Dusty fluid flow between parallel 

plates with heat and mass transfer through a Porous Media was studied by Abbas et al [41]. The effects of vis-

cous dissipation, the slip velocity phenomena, and Joule heating on the heat transfer mechanism of a non-

Newtonian Powell-Eyring fluid that flows due to a stretched sheet is investigated by Abbas et al [42-43]. The 

movement of two immiscible, incompressible, electrically conducting viscous fluids of different viscosities in 

two distinct layers of equal width within a channel filled with porous media under the influence of a transverse 

magnetic field and a steady pressure gradient was reported by Ansari and Deo [44]. Srivastava and Deo  [45] 

examined the fully developed flow in a channel of an incompressible, electrically conducting viscous fluid un-

der the application of a transverse uniform magnetic field through a porous media with varying permeabil-

ity.There is a vast amount of information accessible on the Physical problems involving MHD fluids flow [46–

53].   

 

The present study aims to address this gap by investigate an unsteady Hartman flow and heat transfer 

of two immiscible fluids passing through a horizontal two porous parallel plates with considering Hall 

Effect, therefore. The novelty of this work lies in its both fluids are acted upon by continuous gradient 

of pressure and a constant electromagnetic field that is normal on plates, a uniform suction from above 

and a uniform injection from below. A problem is presented, numerically sorted out, and the relevant 

results are further discussed in depth graphically to explore the impact of different fluid parameters. 

Finally, this type of immiscible fluids can find application in real life in manufacturing processes such 

as  power generators, reactors and industrial cooling systems. Additionally, their heightened thermal 

conductivity makes them suitable for cooling systems applications, enhancing heat dissipation. 

Formulation of the problem  

We consider that an unsteady Hartman flow of two immiscible fluids flowing between two infinite 

porous horizontal parallel plates located at y = h planes and extending in the x and z directions from 

0 to infinite, as shown in figure 1. Region-I which extended from y ≥ −h to y ≤ 0 is filled with a vis-

cous fluid having density ρ1, thermal conductivity k1, dynamic viscosity μ1, and specific heat at con-

stant pressure Cp1.  Region-II extended from y ≥ 0 to y ≤ h it is stuffed by an additional viscous fluid 

that has a density of ρ2, thermal conductivity k2, dynamic viscosity μ2, and specific heat at constant 

pressure Cp2. Both the plates are stationary maintained at different  Tw1 at bottom plate at y=-h and 

Tw2 at lower plate  y= h, in whichTw2 > Tw1. A uniform magnetic field B = (0, Bo, 0) is applied nor-

mal to the planes of the plates (parallel to y-axis)  in positive y-axis. It is taken into account how Hall 

current affected the speed in z-direction. Due to both plates are porous consistent upward suction and 

downward injection are utilized in contrast  the speed in y-axis vo is taken to be uniform. The flow in 

both regions is assumed to be fully developed and acted upon a constant pressure gradient 

( − ∂p ∂x⁄ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) and electrical conductivity (𝜎1 = 𝜎2 = 𝜎). 
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Fig. 1 Schematic diagram of the problem 

 

The generalized Ohm’s law including Hall current is given in the form [54]: 

𝐽 = 𝜎[�⃗⃗� + �⃗� × �⃗⃗� − β (𝐽 × �⃗⃗�)]                                                                                                (1) 

Where J⃗ vector of electric current density, σ the electric conductivity of the fluid, E⃗⃗⃗ vector of intensity 

of the electric field, �⃗� vector of velocity where �⃗�(𝑦, 𝑡) = 𝑢(𝑦, 𝑡)𝑖 + 𝑣0𝑗 + 𝑤(𝑦, 𝑡)�⃗⃗�, B⃗⃗⃗ vector of in-

duced magnetic, and β is the Hall factor. By ignoring polarization influence, we obtain no electric 

field (E⃗⃗⃗=0). Equation (1) may be solved in 𝐽 to yield [22]: 

 

𝐽 × �⃗⃗� =
𝜎𝐵0

1+𝑚2
(𝑚𝑢 − 𝑤)𝑖 +

𝜎𝐵0

1+𝑚2 (𝑢 + 𝑚𝑤)�⃗⃗�                                                                        (2) 

Where, the Hall parameter, 𝑚 = β 𝜎𝐵0. 

The effect of Joule and viscous dissipations are included in the model. Under these assumptions the 

basics equations of the two immiscible fluids are: 

 

Region-I 

 
𝜕𝑣1

𝜕𝑡
= 0                                                                                                                                       (3) 

𝜌1  
𝜕𝑢1

𝜕𝑡
+ 𝜌1𝑣𝑜1

𝜕𝑢1

𝜕𝑦
=  − 

𝜕𝑝1

𝜕𝑥
+ 𝜇1  

𝜕2𝑢1

𝜕𝑦2 −  
𝜎1𝛽𝑜

2

1+𝑚2  (𝑢1 + 𝑚 𝑤1)                                               (4) 

𝜌1  
𝜕𝑤1

𝜕𝑡
+ 𝜌1𝑣𝑜1

𝜕𝑤1

𝜕𝑦
=   𝜇1  

𝜕2𝑤1

𝜕𝑦2 −  
𝜎1𝛽𝑜

2

1+𝑚2  (𝑤1 − 𝑚 𝑢1)                                                            (5) 

𝜌1𝑐𝑝1  
𝜕𝑇1

𝜕𝑡
+ 𝜌1𝑐𝑝1𝑣𝑜1

𝜕𝑇1

𝜕𝑦
= 𝑘1

𝜕2𝑇1

𝜕𝑦2 + 𝜇1 [( 
𝜕𝑢1

𝜕𝑦
)

2
+ ( 

𝜕𝑤1

𝜕𝑦
)

2
] +  

𝜎1𝛽𝑜
2

1+𝑚2  (𝑢1
2 +  𝑤1

2)             (6) 

 

Region-II 

 
𝜕𝑣2

𝜕𝑡
= 0                                                                                                                                       (7) 

𝜌2  
𝜕𝑢2

𝜕𝑡
+ 𝜌2𝑣𝑜2

𝜕𝑢2

𝜕𝑦
=  − 

𝜕𝑝2

𝜕𝑥
+ 𝜇2  

𝜕2𝑢2

𝜕𝑦2 −  
𝜎2𝛽𝑜

2

1+𝑚2  (𝑢2 + 𝑚 𝑤2)                                               (8) 

𝜌2  
𝜕𝑤2

𝜕𝑡
+ 𝜌2𝑣𝑜2

𝜕𝑤2

𝜕𝑦
=   𝜇2  

𝜕2𝑤2

𝜕𝑦2 −  
𝜎2𝛽𝑜

2

1+𝑚2  (𝑤2 − 𝑚 𝑢2)                                                            (9) 

𝜌2𝑐𝑝2  
𝜕𝑇2

𝜕𝑡
+ 𝜌2𝑐𝑝2𝑣𝑜2

𝜕𝑇2

𝜕𝑦
= 𝑘2

𝜕2𝑇2

𝜕𝑦2 + 𝜇2 [( 
𝜕𝑢2

𝜕𝑦
)

2
+ ( 

𝜕𝑤2

𝜕𝑦
)

2
] +  

𝜎2𝛽𝑜
2

1+𝑚2  (𝑢2
2 +  𝑤2

2)             (10) 
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In this work, the continuity of velocity, temperature, and shear stress heat flux between the fluids 

layers are assumed at the interface (y=0). Therefore, initial and boundary conditions for immiscible 

fluids on the velocity and temperature fields are respectively given by: 

At  𝑡 ≤ 0     𝑢1 = 𝑢2 = 𝑤1 = 𝑤2 = 0;   𝑇1 = 𝑇2                                                                       (11a) 

At   𝑡 > 0:    

𝑢1 = 0;   𝑇1 = 𝑇𝑤1   𝑎𝑡 𝑦 = −ℎ                                                                          (11b) 

𝑢2 = 𝑈0;   𝑇2 = 𝑇𝑤2   𝑎𝑡 𝑦 = ℎ                                                                            (11c) 

𝑢1 = 𝑢2;    𝑇1 = 𝑇2;   𝜇1
𝜕𝑢1

𝜕𝑦
= 𝜇2

𝜕𝑢2

𝜕𝑦
;  𝑘1

𝜕𝑇1

𝜕𝑦
= 𝑘2

𝜕𝑇2

𝜕𝑦
;   𝑎𝑡 𝑦 = 0                    (11d)  

 

Equations (3)-(10) will be presented with the following non-dimensional variables: 

𝑥𝑖
∗ =

𝑥𝑖

ℎ
,   𝑦𝑖

∗ =
𝑦𝑖

ℎ
,    𝑧𝑖

∗ =
𝑧𝑖

ℎ
,    𝑡𝑖

∗ =
𝑡𝑖 𝜇1

𝜌1ℎ2 ,    𝑢𝑖
∗ =

𝑢𝑖𝜌1ℎ

𝜇1
,    𝑤𝑖

∗ =
𝑤𝑖𝜌1ℎ

𝜇1
,   𝑝𝑖

∗ =
𝑝𝑖𝜌1ℎ2

𝜇1
,  

 𝑇𝑖
∗ =

𝑇𝑖−𝑇𝑤1

𝑇𝑤2−𝑇𝑤1
, 𝑆𝑖 =

𝜌1ℎ 𝑣𝑜1

𝜇1
 .     

The below formats will apply to the non-dimensional conservation equations: 

 

Region-I 

 

𝜕𝑢1
∗

𝜕𝑡∗ + 𝑆1  
𝜕𝑢1

∗

𝜕𝑦∗ =  −
𝜕𝑝1

𝜕𝑥
+ 

𝜕2𝑢1
∗

𝜕𝑦∗2 − 
𝐻𝑎1

2

 (1+𝑚2)
 (𝑢1

∗ + 𝑚 𝑤1
∗)                                                               (12) 

 

𝜕𝑤1
∗

𝜕𝑡∗ + 𝑆1  
𝜕𝑤1

∗

𝜕𝑦∗ =   
𝜕2𝑤1

∗

𝜕𝑦∗2 −  
𝐻𝑎1

2

 (1+𝑚2)
 (𝑤1

∗ − 𝑚 𝑢1
∗)                                                                           (13) 

𝜕𝑇1
∗

𝜕𝑡∗ + 𝑆1
𝜕𝑇1

∗

𝜕𝑦∗ =
1

𝑃𝑟

𝜕2𝑇1
∗

𝜕𝑦∗2 + 𝐸𝑐 [( 
𝜕𝑢1

∗

𝜕𝑦∗)
2

+ ( 
𝜕𝑤1

∗

𝜕𝑦∗ )
2

] + 
𝐸𝑐 𝐻𝑎2

 (1+𝑚2)
 (𝑢1

∗2 + 𝑤1
∗2)                                  (14) 

 

Region-II 

 

𝜕𝑢2
∗

𝜕𝑡∗ + 𝑆2  
𝜕𝑢2

∗

𝜕𝑦∗ =  −
1

𝜑

𝜕𝑝2

𝜕𝑥
+ 

𝛼

𝜑
 
𝜕2𝑢2

∗

𝜕𝑦∗2 −  
𝐻𝑎2

2𝛼

𝜑 (1+𝑚2)
 (𝑢2

∗ + 𝑚 𝑤2
∗)                                                      (15) 

𝜕𝑤2
∗

𝜕𝑡∗ + 𝑆2
𝜕𝑤2

∗

𝜕𝑦∗ =   
𝛼

𝜑
 
𝜕2𝑤2

∗

𝜕𝑦∗2 −  
𝐻𝑎2

2𝛼

𝜑 (1+𝑚2)
 (𝑤2

∗ − 𝑚 𝑢2
∗)                                                                      (16) 

𝜕𝑇2
∗

𝜕𝑡∗ + 𝑆2
𝜕𝑇2

∗

𝜕𝑦∗ =
𝑘𝑅

𝑐𝑝𝑅 φ𝑃𝑟

𝜕2𝑇2
∗

𝜕𝑦∗2 +
𝐸𝑐 𝛼

𝑐𝑝𝑅 𝜑  
[( 

𝜕𝑢2
∗

𝜕𝑦∗)
2

+ ( 
𝜕𝑤2

∗

𝜕𝑦∗ )
2

] + 
𝐸𝑐 𝐻𝑎2

2𝛼

𝑐𝑝𝑅 𝜑  (1+𝑚2) 
 (𝑢2

∗ 2 + 𝑤2
∗2)             (17)                                                                                       

 

Where, the Hartmann number squared Ha𝑖
2 =

σ𝑖B0
2h2

μ𝑖
, the Eckert number Ec =

μ1
2

𝜌1
2ℎ2Cp1 (Tw2−Tw1)

, the 

Prandtle number 𝑃𝑟 =
𝜇1Cp1 

𝑘1
, α  viscosities ratio, kR thermal conductivities Ratio,  cpR specific heat 

ratio, and φ  densities ratio.  

 

The following are the dimensionless beginning and boundary conditions for the heat and immiscible 

fluids flow issues, respectively: 

 

At  𝑡 ≤ 0:    𝑢1 = 𝑢2 = 𝑤1 = 𝑤2 = 0;   𝑇1 = 𝑇2 = 0                                                                (18a) 

At  𝑡 > 0:     

𝑢1 = 0;   𝑇1 = 0   𝑎𝑡 𝑦 = −1                                                                                (18b) 
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𝑢2 = 1; 𝑇2 = 1      𝑎𝑡 𝑦 = 1                                                                                  (18c) 

𝑢1 = 𝑢2;    𝑇1 = 𝑇2;   𝜇1
𝜕𝑢1

𝜕𝑦
= 𝜇2

𝜕𝑢2

𝜕𝑦
;  𝑘1

𝜕𝑇1

𝜕𝑦
= 𝑘2

𝜕𝑇2

𝜕𝑦
;   𝑎𝑡 𝑦 = 0                       (18d) 

2. Numerical solution 
 

The coupled, unsteady non-linear partial differential equations (12)–(17) under the initial and bounda-

ry conditions (18a)–(18d) can be solved numerically with an implicit finite differences approach using 

Crank-Nicolson technique. The computational domain is discretized with uniform grid of dimension 

∆y and ∆t respectively. The procedure we have adopted involves dividing the solutions into grid 

points and approximating the differential equation by the finite difference equations. The finite differ-

ence equations are obtained by writing the equations at the mid-point of the computational cell and 

then replacing the differential terms by their second order central difference approximation in the t 

direction at (j − 1) and (j + 1) [55-59]. 

 

3. Results and discussion 

 

The results of unsteady MHD Hartman flow for two immiscible fluids between two horizontal infinite 

parallel porous plates are presents and discuss with considering the heat transfer and Hall Effect for 

various parametric conditions.  

 

Figure 2 presents the velocity components 𝑢∗ and 𝑤∗ profiles and temperature distribution 𝑇∗ for dif-

ferent values  𝛼  in the two regions (Region-I and Region-II) and for φ=1, Ha=1, m=1, S1= S2=1, Pr = 

0.7, cpR = 1, kR = 3, and Ec=1. The figure illustrates how the temperature profiles T* and velocity 

components u* and w* reduce as the 𝛼  increases. As 𝛼 increases, the fluid in the two regions grows 

thicker, which results in a reduction in the flow velocity components and a reduction in the tempera-

ture distribution also.   

 

Figure 3 indicates the effect of m on the profiles of 𝑢∗,  𝑤∗and  𝑇∗  in the two regions and for 

α=0.333, φ=1, Ha=1, S1= S2=0.5, Pr=0.7, 𝑐𝑝𝑅 = 1, 𝑘𝑅 = 3, and Ec=1. The figure 3(a) indicates that, 

𝑢∗ is rises as the m. This is due to the fact that, an increase in m decreases the effective conductivity 

Ha2

 (1+m2)
 and hence the magnetic damping. On the other hand the 𝑤∗ decreasing with increasing m as 

shown in figure 3(b), this is for reducing the origin expression 𝑤∗ and lengthening its damping dura-

tion expression  (−
𝐻𝑎2

2

 (1+𝑚2)
( w − m u)). Also, it is seen in figure 3(c) the temperatures of the fluid T∗ 

increasing with increasing m, this is as a result of the Joule dissipation term's increased contribution.  

 

The impact of different Ha on the u*, w* and T∗ and for α=0.333, φ=1, m=1, S1= S2=1, Pr=0.7, 

cpR = 1, kR = 3, and Ec=1 are illustrated in Figure 4.  Figure 4(a) shows that, u∗ decreases with in-

creasing the Ha. It is clear that, w∗ is increases with increasing the Ha at any point in two regions as 

shown in Figure 4(b). Also, Figure 4(c) indicate, the temperature decreases as increasing the Ha. Fig-

ure 5 illustrated the effect of S on the the u*, w* and T∗ profile (α=0.333, φ=1, Ha=2, m=1, cpR =

1, kR = 3, Pr=0.7, and Ec=1). It is noticed that the u*, w* and T∗ decrease with increases the S at any 

point in two regions.  
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The effects of 𝑘𝑅, Pr, and Ec (φ=1, Ha=2, m=1, S1= S2=1,  𝑐𝑝𝑅 = 1, α = 0.333, Pr=0.7, and Ec=1) on 

the 𝑇∗ in the two regions is displayed in figures 6-8.  It is predicted that 𝑇∗ decrease as 𝑘𝑅 increases. 

This means the tendency to cool down the thermal state in the fluid for two regions, as shown in fig-

ure 6. It seen that, when the Pr or Ec increases the 𝑇∗is increases at any point in the two regions, this 

is becouse increase the strength of the heat sources in the temperature equations, as shown in figures 7 

– 8. 

4. Conclusions 

Unsteady flow and heat transfer of two immiscible fluids between two horizontal parallel plates have 

been investigated. Both fluids were assumed to be Newtonian, electrically conducting, and a uniform 

magnetic field was subjected to the fluids and perpendicular to the plates. The following points can be 

concluded: 

 

▪ The velocity and temperature profiles drop as the viscosity ratio rises. 

▪ The paramter m is direct proportional to  𝑢∗and 𝑇∗while it is inverse proportional to 𝑤∗. 

▪ With increased Ha the u∗ and 𝑇∗are decreases, while w∗ is increases at any point in two regions. 

▪ The influence of the  𝑘𝑅, Pr, and Ec, on 𝑇∗ has been achieved. The distribution 𝑇∗ decreases with 

the increase in the  𝑘𝑅, while it increases with the increase in the Pr, and Ec at any position in the 

two regions. 

Future research might focus on exploring more complicated boundary conditions and geometries, 

which are frequently seen in real-world applications to improve fluid flow system innovation and op-

timization in engineering and biological applications with more study and improvement. 

  
(a) (b) 

 
(c) 

Fig. 2: Effect of 𝛼 on 𝑢∗, 𝑤∗ and 𝑇∗   (a) 𝑢∗ Profile; (b) 𝑤∗ Profile; (c) 𝑇∗ Profile. 
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(a) (b) 

 
(c) 

Fig. 3: Effect of m on 𝑢∗, 𝑤∗ and 𝑇∗   (a) 𝑢∗ Profile; (b) 𝑤∗ Profile; (c) 𝑇∗ Profile 

  
(a) (b) 

 
(c) 

Fig. 4: Effect of Ha 𝑢∗, 𝑤∗ and 𝑇∗   (a) 𝑢∗ Profile; (b) 𝑤∗ Profile; (c) 𝑇∗ Profile. 
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(a) (b) 

 
(c) 

 

Fig. 5: Effect of S on 𝑢∗, 𝑤∗ and 𝑇∗ (a) 𝑢∗ Profile; (b) 𝑤∗ Profile; (c) 𝑇∗ Profile ز 

 
Fig. 6: Effects of kR on 𝑇∗   
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Fig. 7: Effects of Pr on 𝑇∗         

 
Fig. 8: Effects of Ec on 𝑇∗  
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Nomenclature 

B induced magnetic field 

B0 magnetic field density 

cP specific heat capacity 

E electric field intensity 

Ec Eckert number 

Ha Hartmann number 

𝐽 electric current density  

k thermal conductivity 

m Hall parameter 

Pr Prandtl number 

S suction parameter 

t time 

t∗ dimensionless time 

T temperature 

T∗ dimensionless temperature 

u, w velocity components along x, and z axes, 

respectively 

u∗, w∗ dimensionless velocity components along 

x, and z axes, respectively 

v⃗⃗ Velocity vector 

Greek symbols 

β Hall factor 

ρ density 

ρ∗ dimensionless density 

𝜎 electric conductivity 

μ viscosity 
 


