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Abstract 

Efficient construction site layout planning is crucial for enhancing productivity and safety. 

This study addresses the complexities of combinatorial optimization in site layout, which 

involves strategically placing temporary structures while managing multiple objectives. 

Existing research has often focused on minimizing travel distances between two facilities, 

neglecting important factors like costs and safety relationships. 
 

This research develops a model with two optimization objectives: minimizing travel 

distance between facilities to lower transportation and construction costs traveling distance, 

and minimizing risks related to interaction frequency between facilities, as increased 

interaction raises collision probabilities. A genetic algorithm (GA) is employed as the 

heuristic optimization method. 
 

The study includes a case study to validate the proposed model, demonstrating its 

effectiveness in providing practical solutions for site layout planning by incorporating cost 

and safety relationships considerations. By offering a more comprehensive approach, this 

research aims to enhance decision-making and improve overall project execution on 

construction site layouts. 
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1. Introduction 
 

Most construction sites encounter difficulties primarily due to management considerations 

rather than technical issues. Effective site-based management plays a crucial role in 

enhancing cost and time savings during the construction process without necessitating 

significant additional effort. Site managers are responsible for controlling and maintaining 

work performance, as well as implementing corrective actions when performance falls short 

(Elbeltagi & Hegazy, 2001). 
 

A key aspect of successful construction management is site layout, which involves the 

systematic organization of the construction site to foster a safe and productive working 

environment. This front-end planning encompasses the optimal use of available site areas and 

consideration of the overall project timeline. The significance of site layout has gained 

considerable attention as a means to reduce costs and time while simultaneously improving 

safety in construction projects (Andayesh & Sadeghpour, 2013). Proper site design not only 

enhances safety and productivity but also boosts the morale and efficiency of workers and 

equipment. Conversely, an inadequate layout can lead to inefficient movement of materials 

and personnel, resulting in various operational challenges (Andayesh & Sadeghpour, 2014). 
 

Construction site layout is about maximizing the effective use of available space to efficiently 

deploy and relocate temporary facilities while respecting work interrelationships (Farmakis & 

Chassiakos, 2018). This is particularly important in both crowded urban areas with limited 

space and larger development projects. In dense environments, it is essential to strategically 

assign and install temporary facilities to avoid wasting valuable site area (Abotaleb et al., 

2016). Conversely, in expansive projects, situating temporary facilities close together can 

minimize transit times between them (Abotaleb et al., 2016). 

Examples of temporary facilities include materials storage spaces, equipment parking lots, 

access roads, batch plants, fabrication shops, site offices, mess rooms, and maintenance 

rooms (Abotaleb et al., 2016a; Elbeltagi & Hegazy, 2001; El-Rayes, Asce, & Khalafallah, 

2005). In urban construction projects, site space is as critical a resource as labor, materials, or 

finances due to limited open areas outside construction zones, especially in densely populated 

cities. Consequently, the effectiveness of construction site layout significantly impacts labor 

and equipment productivity, project timelines, costs, and overall site safety (Elbeltagi & 

Hegazy, 2001; El-Rayes, Asce, & Said, 2009). 
 

While site engineers and managers typically rely on personal judgment and prior experience 

to devise site plans, this experience-based approach can lead to various inefficiencies. 

Potential pitfalls include incorrect facility allocation—such as placing materials in 

inconvenient locations that hinder vehicle movement—insufficient access routes, and unsafe 

conditions created by poor placement of hazardous materials (Abotaleb et al., 2016; El-

Rayes, Asce, & Khalafallah, 2005; Mawdesley et al., 2002; RazaviAlavi & AbouRizk, 2017). 

Therefore, a well-planned site layout is essential for the successful completion of any 

construction project (Abotaleb et al., 2016). 
 

Site layout planning (SLP) involves several steps: identifying necessary temporary facilities 

specific to the project, determining their sizes, and selecting their optimal locations on-site to 
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achieve desired objectives (Abotaleb et al., 2016a; Elbeltagi & Hegazy, 2001). Various 

optimization approaches and models have been developed to address Construction Site 

Layout Planning (CSLP) challenges. These studies predominantly focus on construction sites 

with defined boundaries and specific location constraints, examining scenarios such as 

limited construction zone areas or discrete zones with numerous restrictions (Abotaleb et al., 

2016). 
 

This study introduces an adaptable site layout approach for mega construction projects, 

emphasizing flexible representation of sites and facilities. In the proposed model, facilities 

are defined as collections of unit areas that can adopt any user-specified shape, allowing for a 

versatile site form. The model incorporates a flexible genetic algorithm (GA) method for 

optimal facility placement. Detailed insights into model development and implementation 

using spreadsheet applications are provided, along with validation through example 

applications and discussions of potential expansions. 

 

2. Literature Review  
 

The Quadratic Assignment Problem (QAP) is a crucial model in site layout optimization, 

particularly when addressing specific safety considerations. Numerous studies have explored 

various algorithms to tackle this optimization challenge. Genetic Algorithms (GA) have 

emerged as one of the most prevalent methods for solving QAP, demonstrating versatility and 

effectiveness across various applications (Chuang et al., 2023; Mawdesley et al., 2002; Paes 

et al., 2017; Papadaki & Chassiakos, 2016; RazaviAlavi & AbouRizk, 2017; Said & El-

Rayes, 2013; Wong et al., 2010; Zouein et al., 2002). The flexibility of GA allows it to adapt 

to diverse layout configurations and project requirements, making it suitable for complex 

construction environments. 
 

An effective construction site layout plan ensures the optimal utilization of available space, 

reduced design costs, minimized material relocation during construction, and improved 

accessibility and safety within the work environment (Wang et al. 2024). Understanding 

Construction Site Layout Planning (CSLP) necessitates clear definitions of key aspects, 

including the representation of space, time, and construction elements (Borges et al. 2024). 
 

Beyond Genetic Algorithms, other optimization techniques have been applied to site layout 

problems. Ant Colony Optimization (ACO) has shown promise in enhancing layout 

efficiency (Lam et al., 2007; Wong & See, 2010). Additionally, Artificial Bee Colony 

Optimization has been utilized to address layout challenges with favorable outcomes (Yahya 

& Saka, 2014). Particle Swarm Optimization (PSO) has also been employed, particularly for 

larger projects, showcasing its effectiveness in handling multiple zones or divisions within 

construction sites (Xu & Song, 2014; H. Zhang & Wang, 2008). 
 

In the development of site layout optimization algorithms, early contributions laid the 

foundation for subsequent advancements. Yeh (1995) introduced a mathematical optimization 

model utilizing artificial neural networks, while Lit and Love (1998) were among the first to 

apply Genetic Algorithms specifically to site layout issues. The validation of these models 

was further enhanced through real-world case studies, as demonstrated by Hegazy and 
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Elbeltagi (1999). Mawdesley et al. (2002) introduced a sequence-based GA that incorporated 

graph theory and Euclidean distances to optimize facility placements effectively. Cheung et 

al. (2002) contributed by applying a steady-state GA with a rank-based selection process for 

parent generation, while Mawdesley and Al-Jibouri (2003) improved upon these techniques 

by introducing multiple crossover and mutation operations. 
 

Osman et al. (2003) employed Computer-Aided Design (CAD) technology to develop a GA 

model that accurately considered movement distances within construction sites. Additionally, 

Sanad et al. (2008) integrated safety and environmental factors into their GA model, 

enhancing distance estimation techniques through the use of real route methods. Lam et al. 

(2009) further advanced GA applications by incorporating the Min-Max Ant System 

(MMAS) to improve the generation of initial populations for optimization. 
 

Apart from GA, several studies have explored alternative optimization frameworks. 

Sadeghpour et al. (2004) developed a CAD-based linear programming model that allowed for 

visual representation of site layouts, while Gharaie et al. (2006) employed AutoCAD to 

address static layout problems, introducing a partial path replacement tool to circumvent 

impractical layout solutions. H. Zhang and Wang (2008) proposed a PSO model that 

incorporated a modified solution space boundary handling technique to improve layout 

optimization. 

 

The exploration of multi-objective optimization has also gained traction in recent literature, 

Abdelalim, A.M., et.al. (2021, 2024). Xu et al. (2016) developed a bi-level multi-objective 

genetic algorithm that enabled more sophisticated site optimization across various layers of 

project management. RazaviAlavi and AbouRizk (2017) utilized an integrated simulation-

based GA model to optimize site layouts while aiming to minimize overall project costs. 

Additionally, Benjaoran and Peansupap (2020) employed PSO to address site layout planning 

challenges effectively. 
 

Genetic Algorithms, in particular, have garnered attention for their user-friendly approach 

and effectiveness in addressing large-scale, multi-objective optimization problems. Their 

application has extended beyond traditional optimization fields into various practical areas, 

demonstrating their adaptability (Albadr et al., 2019). Arqub et al. (2014) showcased the use 

of continuous GA to solve complex boundary value problems, while Abo-Hammour et al. 

(2014) tailored GA techniques specifically for singular boundary value challenges. 
 

Kumar and Cheng (2015) introduced an innovative framework for automated site layout 

planning that leverages Building Information Modeling (BIM) to enhance facility sizing and 

arrangement in congested construction environments. By integrating GAs with BIM, their 

approach allows for the precise calculation of trip pathways, leading to more optimal site 

layouts. Construction site layout problems involve not only economic and convenience, but 

also environmental and safety aspects. Attention also must be given to the worker’s safety in 

order to improve productivity and avoid the delays that happen to projects (Elbeltagi et al., 

2004). Researchers have focused on the need for health and safety regulation. This is due to 

the high cost associated with worker injuries as well as time lost due to site accidents. 



Abdelalim et al./ Engineering Research Journal (2025) 184(2) 

C5 

 

Decisions made during site layout planning are aimed at finding the greatest balance between 

site safety and overall project cost. One of the main goals of proper site layout planning is to 

minimize or even avoid accidents on the construction site. In previous literature, safety target 

features and location constrain have recognized the danger of approaching hazards. Safety 

considerations are addressed in the form of preferences or restrictions on distances. In the 

United States, 36% of workplace deaths are due to construction accidents. Therefore, it is 

important to clearly identify any possible sources of hazards within the site (Benjaoran & 

Peansupap, 2020). “The U.S Bureau of Labor Static reports an average of one death and 167 

injuries per $ 100 million of annual construction spending. The total cost of these accidents 

reached $8.9 billion or 6.5% of the 137 billion spent annually on industrial, utility, and 

commercial constructions (Elbeltagi et al., 2004, Abdelalim, A.M., et.al , 2019). 

Achieving safety improvements is critical for construction safety management (Ning et al., 

2018, Abdelalim, Abd-Elhamed, et.al. 2020, Hassanen, M. A. H., & Abdelalim, A. M. 

(2022). In 2014, statistics from the Canadian worker’s association showed that 919 workers 

died on the job, with 25 percent of those deaths occurring in the construction industry (siliker 

2016). According to Randolph Thomas et al. (1989), crowded construction sites can result in 

efficiency losses up to 58% due to restricted access. A University College London study 

reported that high levels of lost productivity due to the poor site layout planning and conflicts 

between sub-contractors can lead to up to 20% of accidents on site. Ning et al., (2018) 

developed a three objective ant colony optimization (ACO)-based model to help planners 

secure layout plans by analyzing risk factors in derailment during the design phase (Wang et 

al., 2015). 
 

In summary, the body of literature on site layout optimization reveals a diverse array of 

algorithms and methodologies, each contributing unique insights and advancements to the 

field. The development of a Genetic Algorithm (GA) model in this study aims to address 

limitations in existing safety objective functions and enhance the preconstruction phase of 

site planning by integrating safety considerations into the arrangement of temporary facilities. 

This research endeavors to provide a scientifically grounded and logically structured 

framework for creating safer and more efficient construction site layouts. 

 

3. Methodology of research 
 

The model begins with a comprehensive overview of the Genetic Algorithm (GA) 

optimization technique, explaining its suitability for solving complex construction site layout 

planning problems. The GA is a powerful heuristic search method inspired by natural 

evolutionary processes, which utilizes a population of potential solutions that evolve over 

successive generations. Each candidate solution represents a possible layout of the 

construction site, and the GA seeks to iteratively improve the configuration by employing 

processes such as selection, crossover, and mutation. This optimization process enables the 

identification of the most efficient construction site layout, considering multiple objectives 

and constraints. 

Following this, a detailed description of the construction site location and its associated 

facilities is provided. This section outlines key factors that influence the site layout, including 
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the physical characteristics of the site, accessibility, and the proximity of essential facilities. 

These facilities may include material storage areas, equipment zones, worker 

accommodation, administrative offices, construction zones, and safety zones. Understanding 

the spatial relationship between these facilities is essential for optimizing the overall 

construction site layout. 

The multi-objective optimization problem is then solved using a Genetic Algorithm in Excel's 

Evolver, where Pareto optimal solutions are obtained by iterating over multiple generations. 

The algorithm simultaneously aims to minimize both transportation costs and safety 

relationships, ensuring that the construction site's layout is optimized not only for efficiency 

but also for the safety and accessibility of the various stakeholders involved. By balancing 

these competing objectives, the GA produces a set of Pareto optimal solutions, offering 

decision-makers a range of configurations to choose from based on the trade-offs between 

cost and safety considerations. This process allows for a more informed, data-driven 

approach to construction site layout planning, resulting in an overall improvement in project 

performance. 

 

4. Optimization model using GA 
 

This study utilizes a heuristic optimization approach Known by Genetic Algorithm (GA) as 

inspired by biological processes. In GA, potential solutions are encoded as chromosomes, 

which are sequences of genes, with each gene representing a variable that is being optimized. 

The fitness function is used to measure the effectiveness of these chromosomes (Lin et al., 

2023; Sanad et al., 2008). 
 

The GA process starts with the random generation of a population comprised of multiple 

chromosomes. As illustrated in Figure 1, three key procedures are employed to determine the 

fittest chromosome: selection, crossover, and mutation. The fittest chromosome is identified 

based on whether the objective is to maximize or minimize the fitness function. 
 

Genes are randomly exchanged between two selected chromosomes during crossover. The 

selection process is biased toward fitter chromosomes, increasing their chances of being 

chosen for crossover. In this step, genes from both chromosomes are randomly swapped. To 

avoid local optima, mutation is introduced, which involves randomly changing the value of 

one or more genes. Each iteration results in a new generation of chromosomes, which are 

then evaluated for fitness using the fitness function. A common criterion for stopping the 

iterations is to set a maximum number of generations (Li & Love, 2000). 
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Fig. 1. Optimization Procedures. 
 

5. Representation of Site Facilities 
 

This study develops a methodology for analyzing and representing sites with irregular or non-

standard characteristics, defined by user-specified coordinates. It addresses the need for a 

flexible approach to handle diverse site configurations that do not conform to traditional 

layouts, such as landscapes, property boundaries, and geographical features. By allowing 

users to input specific coordinates, the study can generate tailored representations, analyses, 

or plans suitable for fields like land development, urban planning, geospatial analysis, and 

environmental assessment. 
 

According to Benjaoran & Peansupap (2020), site facilities can be categorized into four 

types: 
 

1) Fixed Facilities (FF): Permanent structures integral to the site’s function, such as 

office buildings, manufacturing plants, and healthcare centers. These facilities are 

long-lasting and difficult to relocate. 

2) Access Roads (AR): Routes that facilitate transportation and movement within the 

site, including paved and unpaved roads, pathways, and driveways. 

3) Obstacles (OB): Features that may hinder operations or construction, such as natural 

elements (trees, boulders) and man-made obstructions (old buildings, debris). Proper 

identification and management of obstacles are vital for safety and planning. 
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4) Temporary Facilities (TFs): Structures and equipment set up for specific projects or 

events typically used for a limited time, like temporary offices, portable restrooms, 

and storage units. 

This classification aids in site management, organization, and planning by helping 

stakeholders assess the presence and impact of various elements on a project. 
 

To determine the locations of fixed facilities and obstacles, four coordinates are 

established to accommodate their irregular shapes. In contrast, the lower-left corner 

(LC) coordinates represent the position for temporary facility (e.g., TFi (X1i, Y1i)). 

These coordinates serve as reference points for measuring facility dimensions and 

locations, with the LC coordinates defining the starting point of each structure. 

 

Site boundary representation refers to the graphical depiction of a site’s limits, helping to 

define the spatial context. This can be visualized through: 

A. Boundary Lines: Drawing lines on a map to indicate property edges. 

B. Coordinates: Using coordinate points to define the corners or key locations of the 

site. 

These methods enhance understanding of the site’s extent and facilitate effective 

planning and management. As shown in Figure 2. 

 

 

 

Fig. 2. Site boundary and facilities Representation. 

5.1.Decision variables 
 

The decision variables are essential for arranging temporary facilities (TFs) 

efficiently in Construction Site Layout Planning (CSLP), Each facility is 
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represented by a matrix (Xi, Yi, and Oi): 

• Xi: x-coordinate of the lower-left corner of the facility. 

• Yi: y-coordinate of the lower-left corner of the facility. 

• Oi: orientation of the facility. 

The parameter 'n' indicates the total number of temporary facilities, with each 

facility having unique coordinates and orientation. By adjusting these variables 

within the CSLP model, planners can optimize the layout to enhance efficiency, 

minimize costs, maximize resource utilization, and ensure smooth construction 

operations. The decision variable matrix is crucial for tackling the complex spatial 

and logistical challenges in site planning. 

 

 

5.2.Objective functions 
 

The distance between temporary facilities can influence the construction site and the 

achievement of specific objectives should also be considered. Optimizing the layout 

of these facilities is key to improving safety effectiveness, particularly regarding 

their impact on each other’s safety. In this study, a genetic algorithm (GA) model is 

developed with two main objective functions: to enhance safety and reduce 

transportation costs. 

 

1. Total transportation cost objective Function 
 

For the model, the main objective function known by “Cost function”, aimed at 

minimizing the total costs related to travel between temporary facilities (TFs). This 

objective is mathematically expressed in Equation (1). 

 

                                𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = ∑ ∑ dij ∗ R1ijn
j=i+1

n−1
i=1                               Equ. (1) 

  

In this case, dij represents the traveling distance between facilities 𝑖 and𝑗, and 𝑅1𝑖𝑗 is the 

desired proximity weight value between these facilities, reflecting their preferred closeness. 

The variable 𝑛  stands for the total number of facilities in the system. 

 

Unit-weighting relationships play a crucial role showing the connection strength between 

facilities during optimization. Facilities with strong Interrelationships or related operations 

are assigned higher unit weights, suggesting they should be located closer together, while 

those with weaker connections are placed further apart. Research by Hegazy & Elbeltagi 

(1999) and Zouein et al. (2002) highlighted that facility proximity influences these 

relationships. Ning et al. (2010) identified six factors affecting proximity: material, 

information, personnel, and equipment flows, as well as safety, environmental considerations, 



Abdelalim et al./ Engineering Research Journal (2025) 184(2) 

C10 

 

and user preferences. However, quantifying these factors is challenging, and previous studies 

often relied on subjective pairwise comparisons to assess proximity levels. 

In this research, the proximity relationships among facilities are evaluated using 

fuzzy set theory and the preferences of planners through exponential number 

scaling. As shown in Table 1, unit-weighting relationships are categorized into six 

unique values based on proximity levels between pairs of facilities. A higher unit 

weight indicates a stronger proximity relationship between facilities, meaning they 

should be located closer to each other. 
 
 

Table 1. Proximity weight relationship 

Proximity Description weightings 

Absolutely necessary (A) 7,776 

Especially important (E) 1,296 

Important (I) 216 

Ordinary important (O) 36 

Unimportant (U) 6 

Undesirable (X) 1 
 

2. Safety relationship objective function 
 

The safety relationship emphasizes evaluating the risks arising from the interactions 

among various facilities on a construction site. These interactions encompass 

resource flows, including transportation frequency, materials movement, personnel 

mobility, and equipment utilization. This relationship can be measured using 

metrics such as daily transportation units, employee trips per day, and the quantity 

of equipment engaged in transfers (Ning et al., 2010, 2011). 

As the interactions frequency between facilities increases, the risk of conflicts or 

collisions involving materials, personnel, and equipment also rises, correlating 

positively with the intensity of these interactions. Additionally, longer distances 

between facilities result in more crossings and overlaps along transportation routes, 

increasing the risk of road traffic incidents. The distance between facilities directly 

influences the frequency of road traffic crossings, demonstrating a positive 

relationship between risk levels and distance (El-Rayes et al., 2005). Therefore, 

reducing risks tied to the facility safety relationship is essential for improving safety 

performance in construction site layouts, as outlined in Equation (2). 

 

                   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑠𝑎𝑓𝑒𝑡𝑦 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 = ∑ ∑ 𝑑𝑖𝑗 ∗ 𝑅2𝑖𝑗𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1                      Equ. (2) 

   

In this context, 𝑑𝑖𝑗 represents the traveling distance between facilities 𝑖 and𝑗, and 𝑅2𝑖𝑗 

denotes the value of the facility safety relationship. The variable  𝑛  refers to the total 

facilities number involved. 
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To assess safety relationship across different measurement scales, the assessment 

criteria and the corresponding values for each level are detailed in Table 2. This 

framework aims to evaluate and categorize the risk associated with interactions 

among facilities effectively regarding their safety implications. 

 
Table 2. Quantitative Flow Evaluation Levels 

Levels Value 

Very high  243 

High  81 

Medium 27 

Low  9 

Negligible  3 

 

The safety concern is primarily based on Quantitative Flow Evaluation, which 

highlights that an increase in the frequency of interaction flows between facilities 

correlates with a higher probability of conflicts or collisions among materials, 

personnel, and equipment. This is reflected in elevated quantitative flow values, 

indicating greater risk. 

The intensity of contact flows is directly proportional to the likelihood of such risks. 

Additionally, as resources are required to travel longer distances between facilities, 

the number of crossing and overlapping points along the routes increases. The 

frequency of road traffic crossings or overlaps is influenced by the distance between 

facilities, thereby establishing a positive relationship between the level of risk and 

the distance traveled. 
 

Safety concerns are integrated into the proposed by identifying critical factors and 

incorporating them into the framework used for decision-making and evaluation. 

These factors are typically quantified based on site-specific risks, regulations, and 

historical data. Safety concerns can be estimated through risk assessment techniques 

such as: 

▪ Hazard identification methods (e.g., HAZOP or Fault Tree Analysis). 

▪ Statistical models based on past incidents and probability assessments. 

▪ Simulation tools that predict potential safety issues under varying conditions. 

 
 

6. Site layout planning constrains 
 

A site layout feasibility in Construction Site Layout Planning is evaluated using a 

set of constraint functions that account for factors such as site boundaries, overlaps, 

and the necessary distances between facilities. Each rectangular facility is defined 

by two coordinates: the lower-left corner (LC) at (X1i, Y1i) and the upper-right 

corner (UC) at (X2i, Y2i), as illustrated in Figure 3. 
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6.1.Site boundary constrains 
 

The constraint prevents facilities from being placed outside the site boundary by 

applying Equation (3). 
 

           (𝑋1𝑖, 𝑌1𝑖) 𝑎𝑛𝑑 (𝑋2𝑖, 𝑌2𝑖)  ⋸  [𝑆𝐵𝐴𝐶𝑠]             𝑓𝑜𝑟 𝑖 = 1,2,3, 𝑛                          Equ. (3) 

6.2.Overlapping constrain 
 

This constraint prevents more than one facility from occupying the same space 

within the site. It applies to facilities 𝑖 and 𝑗, defined by their lower-left corner (LC) 

and upper-right corner (UC) coordinates, represented as (X1i, Y1i), (X2i, Y2i) for 

facility 𝑖 and (X1j, Y1j), (X2j, Y2j) or facility 𝑗. This requirement is enforced by 

satisfying the following Equation (4). 

 

         𝑀𝑎𝑥 {  [𝑋1𝑖 − 𝑋2𝑗] [𝑋2𝑖 − 𝑋1𝑗]  , [𝑌1𝑖 − 𝑌2𝑗] [𝑌2𝑖 − 𝑌1𝑗] }   ≥   0                 Equ.(4) 

 

6.3.The inter-facility distance constrain 
 

This constraint requires that any two of facilities must be either positioned close 

together or at a safe distance from one another, enhancing both safety and 

productivity on the site. For example, it ensures that the offices are located away 

from noisy and areas prone to dust pollution. All of this can satisfied using equation 

(5). 

  (𝑋2𝑖 = 𝑋1𝑗) 𝑎𝑛𝑑 (𝑌2𝑖 − 𝑌1𝑗 ) = ∁  ,   𝑜𝑟  (𝑌2𝑖 = 𝑌1𝑗 ) 𝑎𝑛𝑑  (𝑋2𝑖 − 𝑋1𝑗) = ∁      Equ.(5) 

   

 

 

 

 

 

Fig. 3. Site layout constrains Representation. 

7. Traveling Distance 
 

In site layout planning (SLP), the distance between facilities significantly impacts various 

target functions. This study utilizes the Euclidean distance method to calculate distances by 

referencing the centroid of each facility's shape. This technique facilitates the measurement of 

straight-line distances between facilities. 

To find the distance using the Euclidean method, the distance between two points in a two-

dimensional plane is determined using the formula of Euclidean distance, as shown in 
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equation (6). For example, if Point C is at (3, 4) and Point D is at (6, 8), the Euclidean 

distance between these points is approximately 5.00 units, as demonstrated in Figure 4. 

 

                             𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √(𝑋𝑎 − 𝑋𝑏)2 +  (𝑌𝑎 − 𝑌𝑏)2                      Equ. (6)                        

Fig. 4. Euclidean distance  

 

8. CASE STUDY 
 

The case study is vital for validating the proposed Genetic Algorithm (GA) model by 

allowing for the application and fine-tuning of parameters to achieve optimal construction 

site layouts. It demonstrates the practical implementation of the model in real-world 

situations, highlighting its effectiveness. 

Analyzing the results from the case study reveals how facility layout influences both cost and 

safety at the construction site. This understanding aids in developing recommendations to 

improve safety and reduce costs through efficient temporary facility arrangements. 

The insights gained from the case study lead to valuable suggestions for site managers, such 

as adjusting temporary facility layouts to enhance safety protocols, minimize hazards, and 

optimize operations. Additionally, cost-saving strategies can be identified by strategically 

placing facilities to reduce unnecessary movement of resources and personnel, thereby 

boosting efficiency and productivity. 

Overall, the case study not only validates the GA model's effectiveness in practical 

applications but also offers actionable recommendations to enhance safety performance and 

cost-efficiency in construction site management. 

The case study presented in this paper is a hypothetical example designed for the purpose of 

demonstrating the application and validation of the proposed Genetic Algorithm (GA) model. 
 

 

8.1.Case Description  

The construction site features a range of facilities, as outlined in Table 3, total number of 

facilities are fifteen which categorized into two types: fixed and free facilities. Seven of these 

are classified as fixed facilities, which include the Office for Engineering, parking, WC, three 

material hoists, and a crane, all positioned in specific and predetermined locations. The office 
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and parking are strategically situated near the entrance of site to enhance accessibility. The 

material hoists used in transporting construction materials and labor to the building's 

superstructure, while the crane effectively moves materials across three different buildings. 

The remaining facilities are classified as free facilities. The algorithm will focus on 

determining the optimal location considered the objective functions. 

 

Table 3. Construction site Facilities 

 NO. Description Sizes 

TF1  Office for Engineering 10 * 5 

TF2 WC 3 * 3 

TF3 Parking 10 * 10 

TF4 Crane 10 * 5 

TF5 Storage for inflammable material 5 * 5 

TF6 Storage for fire equipment 5 * 5 

TF7 Maintenance shop for Equipment 5 * 5 

TF8 Woodworking shop 10 * 5 

TF9 Metal workshop 10 * 5 

TF10 laydown area for Material 10 * 10 

TF11 Labor hut 5 * 5 

TF12 storage yard for Steel 12 * 7 

TF13 Material hoist (for B1) 5 * 5 

TF14 Material hoist (for B2) 5 * 5 

TF15 Material hoist (for B3) 5 * 5 

 

8.2.Site mapping and facility representation 

In this research, all buildings and access roads are defined using four coordinates, while a 

temporary facility can be represented by only one coordinate (LC) and its dimensions, 

indicating which of the two dimensions is horizontal and which is vertical. The orientation 

helps in calculating the other three coordinates. 

8.3.Define distance between facilities 
 

In this research, the distance between two facilities is calculated using the "Euclidean 

distance" equation, measuring the distance from center to center for each pair of facilities. 

The coordinates of the gravity center can be determined as the intersection point between two 

diagonals, represented as  (Xc, Yc) By using Equation (7), the distance between the facilities 

can be obtained. 
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                   𝑑𝑖𝑗 =  √(𝑋𝑐𝑖 − 𝑋𝑐𝑗)2 + (𝑌𝑐𝑖 − 𝑌𝑐𝑗)2                                   Equ. (7) 

 

8.4.Case study results 

The Genetic Algorithm model optimization generates multiple alternative construction site 

layouts (optimal solutions) that strive to minimize overall transportation costs while 

considering safety relationships. Figure 5 illustrate the results of the model's solutions 

obtained from the designated case study. These results highlight the GA's effectiveness in 

creating layouts that harmonize cost efficiency with safety concerns, illustrating the model's 

ability to improve site planning through the optimized arrangement of facilities. 

 

Fig. 5. Result of Case study 

In optimization problems with two objective functions, it's common to encounter multiple 

optimal solutions due to the conflicting nature of these objectives, making it difficult to find a 

single solution that meets all criteria. Mathematically, it's uncommon for one solution to 

excel in all areas since optimizing one objective often compromises the other. In this 

scenario, the algorithm identified seven optimal solutions. 

The decision to halt the optimization process depends on the judgment of the site manager. 

The model starts by minimizing both objectives until it reaches a point where improving one 

objective results in a decline in the other. Given that safety and cost priorities can differ 

among projects, user preferences significantly shape the site layout design. To define specific 

safety and cost targets for the project, feedback from site managers was gathered regarding 

the relative importance of the two objectives. This collaborative approach enables site 

managers to prioritize the aspects that are vital for improving the quality of construction site 

layout plans, fostering informed decision-making in the design process. 

 

The schematic drawings for optimal results of P1, P6, and P7 are presented in detail in Figure 

6, 7, and 8, respectively. Furthermore, Table 4 summarizes the optimal outcomes from the 

construction site layout planning model. 
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Table 4. The most effective solutions for construction site layout  

Objective Functions P1 P2 P3 P4 P5 P6 P7 

Transportation cost 
5,822,843 5,501,215 

 

5,001,946 

 

4,613,159 

 

4,203,422 

 

4,032,664 

 

4,030,791 

 

Safety relationship 
294,441.3 

 

281,531.3 

 

245,550.9 

 

226,139.5 

 

205,661.5 

 

202,141.7 

 

204,113.9 

 

 

9. DISCUSSION OF RESULTS 
 

For the three proposed layouts, arrangement P1 (shown in Fig. 6) reflect the highest values 

for both transportation costs and safety, closely resembling the original layout used at the 

construction site. In P1, the temporary facilities are intentionally spaced apart from TF4 

(crane), TF13 (material hoist 1), TF14 (material hoist 2), and TF15 (material hoist 3), which 

contributes to a reduced risk level within a designated safety zone. For instance, placing TF10 

(laydown area for material) at a distance from TF4 results in longer travel distances, which in 

turn increases both transportation costs and safety relationship values. Moreover, TF9 (steel 

fabrication shop), situated at the lower-left corner of the site, is positioned far from TF12 

(steel storage area), further affecting travel distances. As a result, the total transportation cost 

for resources in P1 amounts to a substantial 5,822,843, while the safety relationship value 

reaches its peak at 294,441.3. 

In contrast, layouts P1 and P6 (illustrated in Fig.7) reveal significant differences in the 

arrangement of temporary facilities (TFs). The layout of P1 features a more spread-out 

configuration of facilities, yielding a safety relationship value of 294,441.3, while P6 

registers a notably lower safety relationship value of 202,141.7. The distance between TF9 

and TF10 in P1 results in higher material handling costs, which contributes to elevated 

resource transportation costs compared to those in P6. Additionally, TF9 is positioned further 

from TF12 in P1 than in P6, which helps to minimize travel distance in the latter layout. 

Consequently, P6 achieves a lower overall transportation cost of 4,032,664, thanks to the 

closer proximity of all TFs, thereby enhancing construction productivity. 

In the comparison between layouts P6 and P7 (see Fig.8), TF11 (labor hut) is located away 

from other facilities in P7, which should ideally be placed closer to facilitate maximum 

interaction between facilities. Additionally, TF7 (Maintenance shop for Equipment) and TF6 

(Storage for fire equipment) in P7 are closer to hazardous facilities than in P6. These factors 

lead to an increase in the safety relationship value to 204,113.9, even though transportation 

costs decrease to 4,030,791. However, P7's layout fails to meet the requirements of both 

objective functions simultaneously, resulting in the selection of construction site layout 

alternative P6 as a compromise solution. 
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The case study showcases the developed model's effectiveness in analyzing and optimizing 

construction site layouts. By quantitatively assessing transportation costs and safety, the 

model facilitates informed decision-making, ensuring a well-balanced layout selection that 

aligns with project priorities. In this case, P6 emerges as the preferred layout due to its 

optimal trade-off between cost efficiency and safety. 

 Fig. 6. Layout for P1 
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Fig. 7. Layout for P6. 

 

Fig. 8. Layout for P7 

 

 

10. Comparison of Results 
 

The "Tri-Objective Ant Colony Optimization Model" (Ning et al., 2018) and the "Genetic 

Algorithm-Based Model for Mega Construction Projects" focus on optimizing construction 

site layout planning (CSLP) but differ in methodology, objectives, and results as shown in 

table 5. 

Table 5 Comparison of result 

P.O.C Ning et al. (2018) New model 

Objectives • Optimizes three objectives: 

1. Geographic Safety Relationship 

(minimizing proximity risks to hazardous 

sources). 

2. Facility Safety Relationship (minimizing 

risks from interaction flows between 

facilities). 

3. Total Resource Transportation Costs. 

• Employs a tri-objective Ant Colony 

Optimization (ACO) algorithm. 

• Focuses on two objectives: 

1. Minimizing total transportation costs 

between facilities. 

2. Minimizing risks arising from 

interaction flows (facility safety 

relationships). 

• Uses a Genetic Algorithm (GA) for 

optimization 
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Methodology • ACO incorporates Pareto optimization to 

provide multiple layout alternatives 

(Pareto front solutions) and uses dynamic 

pheromone updates for iterative 

improvements. 

• Safety is quantified with both interaction-

based and location-based risk measures. 

• GA iteratively generates solutions 

by employing crossover, mutation, 

and selection to minimize objective 

functions. 

• Emphasizes unit proximity weights 

for closeness between facilities and 

integrates fuzzy set theory to 

evaluate these relationships. 

Results • The construction site layout is selected 

through a weighted sum approach, 

evaluating all relevant objective functions. 

• The optimal construction site layout 

should be selected based on 

achieving the lowest values for both 

transportation cost and safety 

relationship. 

 

Based on the selected layout for Ning 2018, we concluded that the weighted sum may reflect 

a higher value for transportation costs compared to other layouts. In contrast, the new model 

can minimize both objective functions without prioritizing one over the other 

 

 

11. Conclusion  
 

This study developed a Genetic Algorithm (GA) model to optimize Construction Site Layout 

Planning (CSLP) by addressing two key objectives: minimizing transportation costs and 

enhancing safety relationships. The model was validated using a case study featuring 15 

facilities with fixed and free layouts. The results highlighted seven potential layout 

alternatives, each balancing transportation cost and safety considerations. 

Among the alternatives, layout P6 emerged as the most optimal, achieving a transportation 

cost of (4,032,664) and a safety relationship value of (202,141.7). This configuration 

effectively minimized material handling distances and enhanced safety by strategically 

positioning facilities with high interaction frequencies close to one another. Conversely, 

layout P1, which resembled the initial site arrangement, exhibited the highest transportation 

cost (5,822,843) and safety value (294,441.3), demonstrating the inefficiency of dispersed 

facility placement. 

The study demonstrates that GA-based optimization offers a systematic and practical 

approach to solving multi-objective CSLP problems. By incorporating site-specific 

constraints and user preferences, the model provides robust solutions that significantly 

improve both economic and safety performance in construction site layouts. 
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